Ôn tập cuối năm phần hình học

BA

Câu 3: (0,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH và đường phân giác BD a) Chứng minh đẳng thức AD ×BC- AB ×DC b) Ching minh 🔺ABC-🔺HBA D) Vẽ đường trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME=5cm, trên tia đối của tia BA lấy điểm F sao cho BF =6cm. Chứng minh BC//EF (Biết AB = 12cm, AC = 16cm) Giúp mik với ( cần gấp ạ)

NT
14 tháng 5 2021 lúc 10:14

d) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{20}{2}=10\left(cm\right)\)

Xét ΔAEF có 

M\(\in\)AE(gt)

B\(\in\)AF(gt)

\(\dfrac{AM}{ME}=\dfrac{AB}{BF}\left(\dfrac{10}{5}=\dfrac{12}{6}=2\right)\)

Do đó: MB//EF(Định lí Ta lét đảo)

hay BC//EF(Đpcm)

Bình luận (0)
NT
14 tháng 5 2021 lúc 10:08

a) Cm \(AD\cdot BC=AB\cdot DC\)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)

hay \(AD\cdot BC=AB\cdot DC\)(đpcm)

Bình luận (0)
NT
14 tháng 5 2021 lúc 10:09

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
KB
Xem chi tiết
LV
Xem chi tiết
BN
Xem chi tiết
NC
Xem chi tiết
PP
Xem chi tiết
YD
Xem chi tiết
LN
Xem chi tiết
BA
Xem chi tiết