Bài 6: Hệ thức Vi-et và ứng dụng

PH

Câu 1.Cho P=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

a, Rút gọn P

b,Tìm GTNN của P.\(\sqrt{x}\)

Câu 2.Cho pt: x2- mx - 4 = 0

Chứng minh: \(\dfrac{2\left(x_1+x_2\right)+7}{x_1^2+x_2^2}\ge-\dfrac{1}{8}\forall m\)

DD
3 tháng 6 2018 lúc 11:14

Câu 1 :

\(P=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Câu 2 :

Ta có :

\(\Delta=m^2+16>0\)

\(=>\) phương trình có 2 nghiệm phân biệt .

Theo định lý vi-ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=-4\end{matrix}\right.\)

Thay vào ta được :

\(\dfrac{2m+7}{m^2+8}\ge-\dfrac{1}{8}\)

\(\Leftrightarrow16m+56\ge-m^2-8\)

\(\Leftrightarrow m^2+16m+64\ge0\)

\(\Leftrightarrow\left(m+8\right)^2\ge0\) ( đúng )

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
HP
Xem chi tiết
BM
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
HN
Xem chi tiết