Violympic toán 9

NM

Câu 1: Xét biểu thức

\(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)

a) Tìm điều kiện của a và b để A có nghĩa. Rút gọn A.

b) Cho giá trị của biểu thức A sau khi đã rút gọn bằng \(\frac{b+10}{b-10}\left(b\ne10\right)\). Chứng minh rằng \(\frac{a}{b}=\frac{9}{10}\)

Câu 2: Rút gọn

a) \(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

Câu 3: Giải phương trình và hệ phương trình sau

a) (x - 2)2 - (x + 3)2 = 2(x - 5)

b) \(\left\{{}\begin{matrix}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{matrix}\right.\)

Câu 4: Cho nửa đường tròn (O) đường kính AB = 2R. Kẻ hai tiếp tuyến Ax và By của mỗi đường tròn (O) và tiếp tuyến thứ ba tiếp xúc với (O) tại điểm M và cắt Ax tại D, cắt By tại E.

a) CM: ΔDOE là tam giác vuông.

b) CM: AD.BE = R2.

c) Xác định vị trí của M trên nửa đường tròn (O) sao cho diện tích ΔDOE đạt giá trị nhỏ nhất.

Câu 5: Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì: n là bội số của 24.

Câu 6: Chứng minh rằng với mọi số thực a, b, c ta có các bất đẳng thức:

a) a4 + b4 ≥ a3b + ab3.

b) a2 + b2 +c2 ≥ ab + bc + ca.

Help me!!!

Thanks trc

NL
11 tháng 8 2020 lúc 9:52

6.

a/ \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b/ \(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

Bình luận (0)
NL
11 tháng 8 2020 lúc 9:58

Câu 5:

\(2n+1\) lẻ nên là SCP lẻ

Đặt \(2n+1=\left(2k+1\right)^2\) với k tự nhiên

\(\Rightarrow2n+1=4k^2+4k+1\Rightarrow n=2k\left(k+1\right)\)

\(\Rightarrow n⋮4\) (do \(k\left(k+1\right)\) là tích 2 STN liên tiếp nên chia hết cho 2)

\(\Rightarrow n+1\) lẻ \(\Rightarrow n+1=\left(2a+1\right)^2\Rightarrow n=4a\left(a+1\right)\Rightarrow n⋮8\)

Mặt khác \(n+1\)\(2n+1\) là các SCP nên chỉ có thể chia hết cho 3 hoặc chia 3 dư 1

\(n+1+2n+1=3n+2\) chia 3 dư 2 \(\Rightarrow n+1\)\(2n+1\) đều chia 3 dư 1

\(\Rightarrow n⋮3\Rightarrow n⋮24\) (do 3 và 8 nguyên tố cùng nhau)

Bình luận (0)
NL
11 tháng 8 2020 lúc 10:05

3.

\(x^2-4x+4-\left(x^2+6x+9\right)=2x-10\)

\(\Leftrightarrow-10x-5=2x-10\)

\(\Leftrightarrow12x=5\)

b. \(\Leftrightarrow\left\{{}\begin{matrix}17\left(x-y\right)+7\left(2x+y\right)=833\\19\left(4x+y\right)+5\left(y-7\right)=1425\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}31x-10y=833\\76x+24y=1460\end{matrix}\right.\)

Bấm máy

Bình luận (0)
NL
11 tháng 8 2020 lúc 10:17

1. ĐKXĐ: \(\left\{{}\begin{matrix}a;b\ge0\\a\ne9\end{matrix}\right.\)

\(A=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{a}\left(\sqrt{b}+2\right)-3\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)}\)

\(=\frac{2\sqrt{a}+3\sqrt{b}}{\left(\sqrt{a}-3\right)\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}=\frac{\left(\sqrt{a}+3\right)\left(2\sqrt{a}+3\sqrt{b}\right)+\left(\sqrt{ab}-6\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)

\(=\frac{2a+9\sqrt{b}+a\sqrt{b}+18}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}=\frac{a\left(\sqrt{b}+2\right)+9\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}\)

\(=\frac{\left(a+9\right)\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}=\frac{a+9}{a-9}\)

b .

\(\frac{a+9}{a-9}=\frac{b+10}{b-10}\Leftrightarrow\frac{a-9+18}{a-9}=\frac{b-10+20}{b-10}\)

\(\Leftrightarrow1+\frac{18}{a-9}=1+\frac{20}{b-10}\Leftrightarrow\frac{18}{a-9}=\frac{20}{b-10}\)

\(\Leftrightarrow18\left(b-10\right)=20\left(a-9\right)\Leftrightarrow18b=20a\Leftrightarrow\frac{a}{b}=\frac{9}{10}\)

Bình luận (0)
NL
11 tháng 8 2020 lúc 10:10

2.

\(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{2}.\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{3}+1}=\frac{\sqrt{6+2\sqrt{4-2\sqrt{3}}}}{\sqrt{3}+1}=\frac{\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{3}+1}\)

\(=\frac{\sqrt{6+2\sqrt{3}-2}}{\sqrt{3}+1}=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}=1\)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
DT
Xem chi tiết
LC
Xem chi tiết
LH
Xem chi tiết
BL
Xem chi tiết
NN
Xem chi tiết
TH
Xem chi tiết
PA
Xem chi tiết
NH
Xem chi tiết