H24

Câu 1: Tính

a) A=\(\left(\dfrac{1}{5^2}-1\right).\left(\dfrac{1}{6^2}-1\right).\left(\dfrac{1}{7^2}-1\right)....\left(\dfrac{1}{2025^2}-1\right)\)

MP
22 tháng 5 2023 lúc 20:49

Để tính giá trị của biểu thức $A = \frac{1}{5^2-1} \cdot \frac{1}{6^2-1} \cdot \frac{1}{7^2-1} \cdots \frac{1}{2025^2-1}$, ta có thể sử dụng công thức $a^2-b^2=(a+b)(a-b)$ để đơn giản hóa các mẫu số trong từng phân số. Ta có:

\begin{align*}
A &= \frac{1}{(5+1)(5-1)} \cdot \frac{1}{(6+1)(6-1)} \cdot \frac{1}{(7+1)(7-1)} \cdots \frac{1}{(45+1)(45-1)} \
&= \frac{1}{4 \cdot 6} \cdot \frac{1}{5 \cdot 7} \cdot \frac{1}{6 \cdot 8} \cdots \frac{1}{46 \cdot 44} \
&= \frac{1}{4} \cdot \frac{1}{5} \cdot \frac{1}{7} \cdot \frac{1}{8} \cdots \frac{1}{44} \cdot \frac{1}{46} \
&= \frac{1}{4} \cdot \frac{1}{46} \cdot \frac{1}{5} \cdot \frac{1}{44} \cdot \frac{1}{7} \cdot \frac{1}{42} \cdots \frac{1}{23} \cdot \frac{1}{21} \
&= \frac{1}{2} \cdot \frac{1}{23} \cdot \left( \frac{1}{2} - \frac{1}{23} \right) \cdot \frac{1}{3} \cdot \left( \frac{1}{3} - \frac{1}{22} \right) \cdots \frac{1}{20} \cdot \left( \frac{1}{20} - \frac{1}{25} \right) \
&= \frac{1}{2} \cdot \frac{1}{23} \cdot \frac{21}{22} \cdot \frac{1}{3} \cdot \frac{19}{22} \cdots \frac{1}{20} \cdot \frac{5}{25} \
&= \frac{1}{2} \cdot \frac{21}{23} \cdot \frac{19}{22} \cdot \frac{17}{20} \cdots \frac{3}{5} \cdot \frac{1}{5} \
&= \frac{21 \cdot 19 \cdot 17 \cdots 3}{2 \cdot 23 \cdot 22 \cdots 5} \cdot \frac{1}{5} \
&= \frac{21 \cdot 19 \cdot 17 \cdots 3}{2 \cdot 23 \cdot 22 \cdots 6} \
\end{align*}

Vậy giá trị của biểu thức $A$ là $\frac{21 \cdot 19 \cdot 17 \cdots 3}{2 \cdot 23 \cdot 22 \cdots 6}$.

Bình luận (0)

Các câu hỏi tương tự
HK
Xem chi tiết
TL
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
MH
Xem chi tiết
NH
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết