Bài 1: Sự đồng biến và nghịch biến của hàm số

MA

Câu 1) Tìm tất cả các giá trị thực của tham số m sao cho phương trình \(\sqrt{x^2-4x+5}\)= m + 4x - x2 có đúng 2 nghiệm dương?

Câu 2) Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình x2-3x+2 ≤ 0 cũng là nghiệm của bất phương trình mx2 + (m+1)x + m +1 ≥ 0

Câu 3) Tìm tất cả các giá trị thực của tham số m sao cho phương trình log2 3 x + \(\sqrt{log_3^2x+1}\)-2m -1=0 có ít nhất một nghiệm trên đoạn [1;3\(\sqrt{3}\)]

NL
11 tháng 6 2019 lúc 0:08

Câu 1:

\(\Leftrightarrow x^2-4x+5+\sqrt{x^2-4x+5}-5=m\)

Đặt \(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}=a\ge1\)

\(\Rightarrow a^2+a-5=m\) (1)

Xét phương trình: \(x^2-4x+5=a^2\Leftrightarrow x^2-4x+5-a^2=0\)

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=5-a^2\end{matrix}\right.\)

\(\Rightarrow\) Nếu \(5-a^2>0\Rightarrow1\le a< \sqrt{5}\) thì pt có 2 nghiệm dương

Nếu \(5-a^2\le0\) \(\Leftrightarrow a\ge\sqrt{5}\) thì pt có 1 nghiệm dương

Vậy để pt đã cho có đúng 2 nghiệm dương thì: (1) có đúng 1 nghiệm thỏa mãn \(1\le a< \sqrt{5}\) hoặc có 2 nghiệm pb \(a_1>a_2\ge\sqrt{5}\)

Xét \(f\left(a\right)=a^2+a-5\) với \(a\ge1\)

\(f'\left(a\right)=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến \(\forall a\ge1\) \(\Rightarrow y=m\) chỉ có thể cắt \(y=f\left(a\right)\) tại nhiều nhất 1 điểm có hoành độ \(a\ge1\)

\(f\left(1\right)=-3\) ; \(f\left(\sqrt{5}\right)=\sqrt{5}\)

\(\Rightarrow\) Để pt có 2 nghiệm pb đều dương thì \(-3\le m< \sqrt{5}\)

Bình luận (0)
NL
11 tháng 6 2019 lúc 0:19

Câu 2:

\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) (1)

Ta có: \(mx^2+\left(m+1\right)x+m+1\ge0\)

\(\Leftrightarrow m\left(x^2+x+1\right)\ge-x-1\)

\(\Leftrightarrow m\ge\frac{-x-1}{x^2+x+1}=f\left(x\right)\) (2)

Để mọi nghiệm của (1) là nghiệm của (2) \(\Leftrightarrow\left(2\right)\) đúng với mọi \(x\in\left[1;2\right]\)

\(\Rightarrow m\ge\max\limits_{\left[1;2\right]}f\left(x\right)\)

\(f'\left(x\right)=\frac{-\left(x^2+x+1\right)+\left(2x+1\right)\left(x+1\right)}{\left(x^2+x+1\right)^2}=\frac{x^2+2x}{\left(x^2+x+1\right)^2}>0\) \(\forall x\in\left[1;2\right]\)

\(\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\max\limits_{\left[1;2\right]}f\left(x\right)=f\left(2\right)=-\frac{3}{7}\)

\(\Rightarrow m\ge-\frac{3}{7}\)

Bình luận (0)
NL
11 tháng 6 2019 lúc 0:26

Câu 3:

ĐKXĐ: \(x>0\)

\(log^2_3x+1+\sqrt{log_3^2x+1}-2=2m\)

Đặt \(\sqrt{log^2_3x+1}=a\) \(\Rightarrow1\le a\le2\)

Phương trình trở thành: \(a^2+a-2=2m\)

Xét \(f\left(a\right)=a^2+a-2\) trên \(\left[1;2\right]\)

\(f'\left(a\right)=2a+1=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến trên \(\left[1;2\right]\)

\(\Rightarrow f\left(1\right)\le f\left(a\right)\le f\left(2\right)\Rightarrow0\le f\left(a\right)\le4\)

\(\Rightarrow0\le2m\le4\Rightarrow0\le m\le2\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
TP
Xem chi tiết
AN
Xem chi tiết
NH
Xem chi tiết
AN
Xem chi tiết
TC
Xem chi tiết