BV

Câu 1: a) Chia số 552 thành 3 phần tỉ lệ thuận với 3; 4; 5.

            b) Chia số 315 thành 3 phần tỉ lệ nghịch với 3; 4; 6.

Câu 2: Tìm các số hữu tỉ x, y, z biết rằng: \(\frac{x}{11}=\frac{y}{12};\frac{y}{3}=\frac{z}{7}\) và 2x - y + z = 512.

H24
22 tháng 5 2019 lúc 8:38

#)Trả lời :

Câu 1 :

a) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552

    Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )

b) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)

    => \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315 

   Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )

Câu 2 :

   \(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)

   \(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)

   Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)

   Áp dụng tính chất dãy tỉ số bằng nhau :

   \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)

\(\Rightarrow x=44;y=48;z=112\)

    #~Will~be~Pens~#

Bình luận (0)
KN
25 tháng 5 2019 lúc 6:28

1a) Gọi ba phần đó là x, y, z.

Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)

\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)

Vậy 3 phần đó là 138, 184, 230

Bình luận (0)
KN
25 tháng 5 2019 lúc 6:44

b) Gọi 3 phần đó là a, b, c .

Ta có: a, b, c tỉ lệ nghịch với 3, 4, 6 nên \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)

Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)

\(\Rightarrow\hept{\begin{cases}a=420.\frac{1}{3}=140\\b=420.\frac{1}{4}=105\\c=420.\frac{1}{6}=70\end{cases}}\)

Vậy 3 phần đó lần lượt là 140, 105, 70

Bình luận (0)
KN
25 tháng 5 2019 lúc 6:49

Ta có:\(\hept{\begin{cases}\frac{x}{11}=\frac{y}{12}\Leftrightarrow\frac{2x}{22}=\frac{y}{12}\\\frac{y}{3}=\frac{z}{7}\Leftrightarrow\frac{y}{12}=\frac{z}{28}\end{cases}}\)(1)

Từ (1) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)

Áp dụng tính chất của dãy các tí số bằng nhau, ta có:

\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{512}{38}\)

Sau đó tính x,y,z

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
LP
Xem chi tiết
TL
Xem chi tiết
V0
Xem chi tiết
G6
Xem chi tiết
MH
Xem chi tiết
G6
Xem chi tiết
ND
Xem chi tiết
G6
Xem chi tiết