AN

Cần trong ngày hôm nay ( lưu ý giải chi tiết nhé :0)loading...

H24
23 tháng 9 2023 lúc 20:34

\(a,\left\{{}\begin{matrix}\dfrac{2}{x-3}-3\sqrt{y+3}=1\\\dfrac{1}{x-3}+\sqrt{y+3}=3\end{matrix}\right.\)

Đặt \(a=\dfrac{1}{x-3};b=\sqrt{y+3}\left(1\right)\)

Hệ pt trở thành : \(\left\{{}\begin{matrix}2a-3b=1\\a+b=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Thay \(a=2,b=1\) vào \(\left(1\right)\) ta có :

\(\dfrac{1}{x-3}=2\left(dk:x\ne3\right)\Leftrightarrow x-3=\dfrac{1}{2}\Leftrightarrow x=\dfrac{7}{2}\left(tm\right)\)

\(\sqrt{y+3}=1\left(dk:y\ge-3\right)\Leftrightarrow\left|y+3\right|=1\Leftrightarrow y+3=1\Leftrightarrow y=-2\left(tm\right)\)

Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{7}{2};-2\right)\)

\(b,\left\{{}\begin{matrix}\sqrt{x-1}+\dfrac{2}{y+1}=2\\\sqrt{x-1}-\dfrac{1}{y+1}=8\end{matrix}\right.\)

Đặt \(\sqrt{x-1}=a;\dfrac{1}{y+1}=b\left(2\right)\)

Hệ pt trở thành : \(\left\{{}\begin{matrix}a+2b=2\\a-b=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=-2\end{matrix}\right.\)

Thay \(a=6,b=-2\) vào \(\left(2\right)\) ta có :

\(\sqrt{x-1}=6\left(dk:x\ge1\right)\Leftrightarrow\left|x-1\right|=36\Leftrightarrow x-1=36\Leftrightarrow37\left(tm\right)\)

\(\dfrac{1}{y+1}=-2\left(dk:y\ne-1\right)\Leftrightarrow y+1=-\dfrac{1}{2}\Leftrightarrow y=-\dfrac{3}{2}\left(tm\right)\)

Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(37;-\dfrac{3}{2}\right)\)

 

 

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
DL
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
KC
Xem chi tiết
KC
Xem chi tiết
NA
Xem chi tiết
CT
Xem chi tiết
TV
Xem chi tiết