Chứng minh rằng \(5n^3+15n^2+10n\)luôn luôn chia hết cho 30 với mọi n là số nguyên
Bài 6: Tìm giá trị nguyên của n để :
1) 3n^3 +10n^2 - 5 chia hết cho 3n+1
2) 4n^3 +11n^2 +5n+ 5 chia hết cho n+2
3) n^3 - 4n^2 +5n -1 chia hết cho n-3
chứng minh rằng : 5n3 -10n2-10n chia hết 30
Chứng minh rằng:5n^3+15n^2+10n chia hết cho 30 với mọi số nguyên n
bài 1:CMR:5n3+15n2+10n chia hết cho 30 với mọi n thuộc Z
bài 2:tìm 4 số nguyên dương liên tiếp, biết rằng tích của chúng =120
Tìm n thuộc Z để:
a)(2n^2+n—7) chia hết cho (n—2)
b)(10n^2—7n—5) chia hết cho (2n—3)
c)(2n^2+3n+3) chia hết cho (2n—1)
chứng minh rằng :
a. n^3+5n chia hết cho 6
b.n^3*19n chia hết cho 6
c. 5n^3+15n^2+10n chia hết cho 6
Với \(n\in Z\), chứng minh rằng: \(5n^3+15n^2+10n\) chia hết cho 30
1/ Chứng minh n5-5n3+4n chia hết cho 120 với mọi số nguyên n
2 / Chứng minh rằng n3+3n2+n+3 chia het chi 48 với mọi số lẽ n
3/ CMR n^4+4n3-4n2-16n chia hết cho 384 với mọi số nguyên n