\(\sqrt{2x^2-4x+5}=x-4\left(x\ge4\right)\)
\(\Rightarrow2x^2-4x+5=x^2-8x+16\)
\(\Rightarrow x^2+4x-11=0\)
Có: \(\Delta=4^2-4\left(-11\right)=60>0\Rightarrow\sqrt{\Delta}=2\sqrt{15}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-4+2\sqrt{15}}{2}=-2+\sqrt{15}\left(l\right)\\x=\frac{-4-2\sqrt{15}}{2}=-2-\sqrt{15}\left(l\right)\end{cases}}\)
Vậy \(x\in\left\{\phi\right\}\)