A=1-(1-1/2)+1/3-(1/2-1/4)+..-(1/1006-1/2012)
A=1-1+1/2+1/3-1/2+1/4+...-1/1006+1/2012
A=(1-1)+(1/2-1/2)+...+(1/1006-1/1006)+1/1007+1/1008+..+1/2012
A=B => (A/B)^2013=1
Học tốt
A=1-(1-1/2)+1/3-(1/2-1/4)+..-(1/1006-1/2012)
A=1-1+1/2+1/3-1/2+1/4+...-1/1006+1/2012
A=(1-1)+(1/2-1/2)+...+(1/1006-1/1006)+1/1007+1/1008+..+1/2012
A=B => (A/B)^2013=1
Học tốt
A=1-1/2-1/3-1/4-...-1/2012. B = 1/1007+1/1008+1/1009+1/2012 tính (A)/(B)^2013
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...-\frac{1}{2012};\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)Tính \(\left(\frac{A}{B}\right)^{2013}\)
Cho S = -1/2 + 1/3 - 1/4 +......+1/2011 - 1/2012 + 1/2013 và P = 1/1007 + 1/1008 + .......+ 1/2012 + 1/2013
Tính (S - P)2013
S=1-1/2+1/3-1/4+...+1/2011-1/2012+1/2013 VÀ P=1/1007+1/1008+...+1/2013 TÍNH (S-P)^2016
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2012};B=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)
\(\)
Tính \(\left( \frac{A}{B}\right)^{2013}\)
Giúp mk nha
Ai nhanh mk tk :))
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(B=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2011}+\frac{1}{2012}\)
\(Tính\left(\frac{A}{B}\right)^{2013}\)
CHO A=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
VÀ B=\(\frac{1}{1007}+\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2012}\)
HÃY TÍNH\(\left(\frac{A}{B}\right)^{2013}\)
Cho \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)và \(B=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)
Hãy tính \(\left(\frac{A}{B}\right)^{2012}\)
Ai đó giải giúp với ạ :(
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)
Tính\(\left(S-P\right)^{2013}\)