Violympic toán 8

BB

Các biểu thức x+y+z và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) có thể cùng có giá trị bằng 0 được hay không?

NL
27 tháng 12 2020 lúc 10:43

Để 2 biểu thức tồn tại thì \(xyz\ne0\)

Giả sử cả 2 cùng bằng 0

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=0\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\\\dfrac{xy+yz+zx}{xyz}=0\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2=0\Rightarrow x=y=z=0\) (trái với điều kiện \(xyz\ne0\))

Vậy điều giả sử là ai hay 2 biểu thức ko thể đồng thời bằng 0

Bình luận (1)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NH
Xem chi tiết
PT
Xem chi tiết
DC
Xem chi tiết
DN
Xem chi tiết
DF
Xem chi tiết