Các bạn ơi giải giúp mình với nha :
Rút gọn biểu thức:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{90}+\sqrt{100}}\)
Chứng minh đẳng thức :
\(\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}\)với n là số tự nhiên
Chứng minh các đại thức :
\(\left(\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\right)^2=\sqrt{8}\)
Giúp mình với nhé!
a)= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
= \(-1+\sqrt{100}\)
= -1 +10
=9
b)Ta có\(\left(\sqrt{n+1}-\sqrt{n}\right)\cdot\left(\sqrt{n+1}+\sqrt{n}\right)\)=n+1-n=1 (1)
Lại có:\(\frac{1}{\sqrt{n+1}+1}\cdot\left(\sqrt{n+1}+1\right)=1\)(2)
Từ (1) và (2)=>\(\left(\sqrt{n+1}-1\right)=\frac{1}{\sqrt{n+1}+1}\)
c)\(\left(\frac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}+\frac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\right)^2\)
=\(\left(\frac{\left(2+\sqrt{2}\right)^2}{\sqrt{2}+\sqrt{\left(2+\sqrt{2}\right)^2}}+\frac{\left(2-\sqrt{2}\right)^2}{\sqrt{2}-\sqrt{\left(2-\sqrt{2}\right)^2}}\right)^2\)
=\(\left(\frac{\left(2+\sqrt{2}\right)^2}{2+2\sqrt{2}}+\frac{\left(2-\sqrt{2}\right)^2}{-2+2\sqrt{2}}\right)^2\)
=\(\left(\frac{\left(2+\sqrt{2}\right)^2\cdot\left(2\sqrt{2}-2\right)}{\left(2\sqrt{2}+2\right)\cdot\left(2\sqrt{2}-2\right)}+\frac{\left(2-\sqrt{2}\right)^2\cdot\left(2\sqrt{2}+2\right)}{\left(2\sqrt{2}-2\right)\left(2\sqrt{2}+2\right)}\right)^2\)
=\(\left(\frac{\left(2+\sqrt{2}\right)^2\cdot\left(2\sqrt{2}-2\right)+\left(2-\sqrt{2}\right)^2\cdot\left(2\sqrt{2}+2\right)}{4}\right)^2\)
=\(\left(\frac{12\sqrt{2}-12+16-8\sqrt{2}+12\sqrt{2}+12-16-8\sqrt{2}}{4}\right)^2\)
=\(\left(\frac{8\sqrt{2}}{4}\right)^2=8\)