§1. Bất đẳng thức

H24

các bạn lm bt giúp mình nha

mk sẽ tik cho cả tuần luôn :))

nhưng mình nhiều lắm đó , mình sẽ đăng từng câu 1 lên thôi

NA
13 tháng 8 2016 lúc 14:32

                               ok, nếu mình làm được 

                                    chúc bạn học tốtvui

Bình luận (1)
KH
23 tháng 8 2016 lúc 17:47

Ta cần chứng minh : a1+a2+...+anna1.a2...an−−−−−−−−−√na1+a2+...+ann≥a1.a2...ann với nN*n∈N*

Hiển nhiên bđt đúng với n = 2 , tức là a1+a22a1a2−−−−√a1+a22≥a1a2 (1)

Giả sử bđt đúng với n = k , tức là a1+a2+...+akka1.a2...ak−−−−−−−−−√ka1+a2+...+akk≥a1.a2...akk với k>2k>2

Ta sẽ chứng minh bđt cũng đúng với mọi n = k + 1 

Không mất tính tổng quát, đặt a1a2...akak+1a1≤a2≤...≤ak≤ak+1

thì : ak+1a1+a2+...+akkak+1≥a1+a2+...+akk . Lại đặt a1+a2+...+akk=x,x0a1+a2+...+akk=x,x≥0

ak+1=x+y,y0⇒ak+1=x+y,y≥0 và xk=a1.a2...akxk=a1.a2...ak (suy ra từ giả thiết quy nạp)

Ta có : (a1+a2+...+ak+1k+1)k+1=(kx+x+yk+1)k+1=(x(k+1)+yk+1)k+1=(x+yk+1)k+1(a1+a2+...+ak+1k+1)k+1=(kx+x+yk+1)k+1=(x(k+1)+yk+1)k+1=(x+yk+1)k+1

                                            xk+1+(k+1).yk+1.xk=xk+1+y.xk=xk(x+y)a1.a2...ak.ak+1≥xk+1+(k+1).yk+1.xk=xk+1+y.xk=xk(x+y)≥a1.a2...ak.ak+1

Suy ra (a1+a2+...+ak+1k+1)k+1a1.a2...ak+1−−−−−−−−−−√k+1(a1+a2+...+ak+1k+1)k+1≥a1.a2...ak+1k+1

Vậy bđt luôn đúng với mọi n > 2 (2)

Từ (1) và (2) suy ra đpcm.

Bình luận (1)
LA
25 tháng 8 2016 lúc 22:10

uh

nhớ tick mih nhéhiuhiu

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
TC
Xem chi tiết
NS
Xem chi tiết
PO
Xem chi tiết
VT
Xem chi tiết
MH
Xem chi tiết