Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

CÁC BẠN GIÚP MÌNH VỚI

AH
28 tháng 8 2021 lúc 10:57

Lời giải:

Trước hết, bạn nhớ đến tính chất nổi tiếng: Tam giác $ABC$ có trọng tâm $G\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$

Áp dụng vô bài toán, ta có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}(1)\)

\(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}=\overrightarrow{0}\) $(2)$

--------------------------

Từ \((2)\Leftrightarrow \overrightarrow{G'A}+\overrightarrow{AA'}+\overrightarrow{G'B}+\overrightarrow{BB'}+\overrightarrow{G'C}+\overrightarrow{CC'}=\overrightarrow{0}\)

\(\Leftrightarrow (\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C})+(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'})=\overrightarrow{0}\)

\(\Leftrightarrow (\overrightarrow{G'G}+\overrightarrow{GA}+\overrightarrow{G'G}+\overrightarrow{GB}+\overrightarrow{G'G}+\overrightarrow{GC})+(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'})=\overrightarrow{0}\)

\(\Leftrightarrow (3\overrightarrow{G'G})+(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'})=\overrightarrow{0}\)

\(\Leftrightarrow \overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=-3\overrightarrow{G'G}=3\overrightarrow{GG'}\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
AT
Xem chi tiết
NP
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết