§1. Phương trình đường thẳng

NU

CÁC BẠN GIÚP MÌNH VỚI !!hihi

Cho ba điểm A(-6;3) , B(0;-1), C(3;2). Điểm M trên đường thẳng D: 2x-y+3=0 mà giá trị tuyệt đối của vecto MA+vecto MB+ vecto MC nhỏ nhất?

NG
6 tháng 2 2017 lúc 20:34

Do M thuộc đường thẳng 2x-y+3=0 nên gọi M(x;2x+3)

gọi G là trọng tâm tam giác ABC

ta có G(-1;4/3)

ta chứng minh được \(3\overrightarrow{MG}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)

=> \(\overrightarrow{3MG}\)=(3.(-1-x);3(4/3-2x-3))

=(-3-x;-5-6x)

=> độ dài \(\overrightarrow{3MG}\)=\(\sqrt{\left(-3-x\right)^2+\left(-5-6x\right)^2}\)=\(\sqrt{37x^2+66x+34}=\sqrt{37\left(x^2+2\frac{33x}{37}+\frac{33^2}{37^2}+\frac{169}{1369}\right)}=\sqrt{37\left(x+\frac{33}{37}\right)^2+\frac{169}{37}}\) vậy GTNN của đọ dài tổng ba véc tơ là \(\frac{13}{\sqrt{37}}\)

đó là đọ dài véc tơ chứ không phải dấu giá trị tuyệt đối đâu nhé

nếu mình sai sót chỗ nào thì bạn cứ theo hướng đó mà làm sẽ ra thôi

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
LL
Xem chi tiết
2N
Xem chi tiết
H24
Xem chi tiết
SP
Xem chi tiết
TH
Xem chi tiết
AL
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết