Ôn tập cuối năm phần số học

MT

Các bạn giải hộ mình bài này với: Cho a,b,c > 0
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}>=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
MÌNH ĐÃ GIẢI THỬ RỒI VÀ KHÔNG BIẾT CÓ ĐÚNG HAY KHÔNG, CÁC BẠN CHO Ý KIẾN NHÉ VÀ GIÚP MÌNH BIẾT THÊM CÁC CÁCH GIẢI KHÁC NHÉ:
x=\(\dfrac{1}{a}\)
y=\(\dfrac{1}{b}\)
z=\(\dfrac{1}{c}\)

=> \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}\) *
Áp dụng bất đẳng thức schwarz ta được:
\(\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}>=\dfrac{\left(x+y+z\right)^2}{x+y+z}\)**
Từ * và ** suy ra \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}>=\dfrac{\left(x+y+z\right)^2}{x+y+z}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

AH
6 tháng 5 2018 lúc 0:19

Cách khác:

Áp dụng BĐT AM-GM:

\(\frac{a}{b^2}+\frac{1}{a}\geq 2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)

\(\frac{b}{c^2}+\frac{1}{b}\geq 2\sqrt{\frac{1}{c^2}}=\frac{2}{c}\)

\(\frac{c}{a^2}+\frac{1}{c}\geq 2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\)

Cộng theo vế và rút gọn:

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)

Bình luận (0)
AH
6 tháng 5 2018 lúc 0:16

Đúng rồi bạn nhé.

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
VC
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
GM
Xem chi tiết
MM
Xem chi tiết
NA
Xem chi tiết
QS
Xem chi tiết
BS
Xem chi tiết