\(C=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{1023}\)
\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}....+\frac{1}{31\cdot33}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{31}-\frac{1}{33}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{33}\right)\)
\(=\frac{1}{2}\cdot\frac{32}{33}\)
\(=\frac{32}{66}=\frac{16}{33}\)
Vậy \(A=\frac{16}{33}\)
HOK TỐT .
\(C=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{1023}\)
\(C=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{31\cdot33}\)
\(C=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{31\cdot33}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{31}-\frac{1}{33}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{33}\right)\)
\(C=\frac{1}{2}\cdot\frac{32}{33}\)
\(C=\frac{16}{33}\)
\(C=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{1023}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{31.33}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{31}-\frac{1}{33}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{33}\right)\)
\(=\frac{1}{2}.\frac{32}{33}\)
\(=\frac{16}{33}\)
#Chúc bạn học tốt#
C=1/3 + 1/15 +1/35 +1/63+...+1/1023
C=1/1.3+1/3.5+1/5.7+1/7.9+...+1/31.33
C=1/2.(2/1.3+2/3.5+2/5.7+2/7.9+...+2/31.33)
C=1/2.(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/31-1/33)
C=1/2.(1-1/33)
C=1/2.(33/33-1/33)
C=1/2.32/33
C=16/33
Vậy C=16/33
\(C=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{1023}\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{31.33}\)
\(C=\frac{1}{2}\times\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{31.33}\right)\)
\(C=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{31}-\frac{1}{33}\right)\)
\(C=\frac{1}{2}\times\left(1-\frac{1}{33}\right)\)
\(C=\frac{1}{2}\times\frac{32}{33}\)
\(C=\frac{16}{33}\)
_Chúc bạn học tốt_