\(C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2016}}\)
\(\Rightarrow4C=4+1+\frac{1}{4}+...+\frac{1}{4^{2015}}\)
\(\Rightarrow4C-C=3C=4-\frac{1}{4^{2015}}\)
\(\Rightarrow C=\left(\frac{4^{2016}-1}{4^{2015}}\right):3=\frac{4^{2016}-1}{4^{2015}.3}\)
\(C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2016}}\)
\(4C=4+1+\frac{1}{4^2}+...+\frac{1}{4^{2015}}\)
\(3C=4C-C=4-\frac{1}{4^{2016}}\)
=> \(C=\frac{4-\frac{1}{4^{2016}}}{3}\)
\(C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2016}}\)
\(\Rightarrow4C=4+1+\frac{1}{4}+...+\frac{1}{4^{2015}}\)
\(\Rightarrow4C-C=4-\frac{1}{4^{2015}}\)
\(\Rightarrow3C=4-\frac{1}{4^{2015}}\)
\(\Rightarrow C=\frac{4^{2016}-1}{4^{2015}.3}\)