`y'=[-3]/[(x-1)^2]`
Ta có: `y'(2)=-3`
`=>` Phương trình tiếp tuyến của `(C)` tại `A` là: `y-4=-3(x-2)`
Hay `y=-3x+10`.
`y'=[-3]/[(x-1)^2]`
Ta có: `y'(2)=-3`
`=>` Phương trình tiếp tuyến của `(C)` tại `A` là: `y-4=-3(x-2)`
Hay `y=-3x+10`.
Cho hàm số y = x - 2 x + m - 1
Viết phương trình tiếp tuyến d của đồ thi (C ) tại điểm M có hoành độ a ≠ -1
Cho hàm số y = 2 2 - x
Tìm giao điểm của (C ) và đồ thị hàm số y= x 2 +1 . Viết phương trình tiếp tuyến của (C ) tại mỗi giao điểm.
Cho hàm số y = f(x) có đạo hàm liên tục trên khoảng K và có đồ thị là đường cong (C). Viết phương trình tiếp tuyến của (C) tại điểm M(a; f(a)).
A. .
B. .
C. .
D. .
Viết phương trình tiếp tuyến của đồ thị hàm số:
\(y=\dfrac{-x+2}{x+1}\)
a, Tại giao điểm của đồ thị vs trục hoành
b, Tại giao điểm của đồ thị vs trục tung
c, Hệ số góc \(k=-3\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:
y = − x 3 + 3x + 1
b) Chỉ ra phép biến hình biến (C) thành đồ thị (C’) của hàmsố:
y = ( x + 1 ) 3 − 3x − 4
c) Dựa vào đồ thị (C’), biện luận theo m số nghiệm của phương trình:
( x + 1 ) 3 = 3x + m
d) Viết phương trình tiếp tuyến (d) của đồ thị (C’), biết tiếp tuyến đó vuông góc với đường thẳng
Cho hàm số: y = – x 4 – x 2 + 6
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng: y = x/6 –1
Cho hàm số \(y=\dfrac{1}{2}x^4-x^2+m\)(m là tham số ) có đồ thị (Cm), đường tròn (S)có phương trình \(x^2+y^2+2x+6y+1=0\) và điểm A(-1;-6).Tìm m để tồn tại tiếp tuyến với đồ thị (Cm) cắt đường tròn (S) tại hai điểm phân biệt B,C sao cho tam giác ABC có chu vi đạt giá trị lớn nhất
Viết phương trình tiếp tuyến của đồ thị hàm số:
\(y=x^3-6x+5\)
a, Tại điểm có hoành độ \(x_0=1\)
b, Tại điểm có tung độ \(y_0=5\)
c, Hệ số góc \(k=-9\)
Cho đường cong (C) có phương trình y = x - 1 x + 1 . Gọi M là giao điểm của (C) với trục tung. Tiếp tuyến của (C) tại M có phương trình là:
Cho hàm số: y = – x 4 – x 2 + 6. Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng: y = x/6 –1