\(c,x\left(3x-16\right)=-5\\ =>3x^2-16x+5=0\\ =>3x^2-15x-x+5=0\\ =>3x\left(x-5\right)-\left(x-5\right)=0\\ =>\left(3x-5\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}3x-5=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=5\end{matrix}\right.\)
c,x(3x−16)=−5=>3x2−16x+5=0=>3x2−15x−x+5=0=>3x(x−5)−(x−5)=0=>(3x−5)(x−5)=0=>[3x−5=0x−5=0=>⎡⎣x=53x=5