\(a:\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{5+2\sqrt{6}}\)
b : \(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}-\sqrt{2}\)
c : \(\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right).\left(2+\dfrac{5-3\sqrt{5}}{3-\sqrt{5}}\right)\)
d : \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
Rút gọn các biểu thức sau:
a \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
b \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
c \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\)
d \(\dfrac{10}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\left(\dfrac{1+\sqrt{2}}{\sqrt{4-2\sqrt{3}}}:\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\right)\)
h) |3x + 1|-x-5=0 i) 2x|x + 1] = 7 j) 7|2x + 1] = x 1 c) √5²-2 1 √5+2 + d) 5+2√5 3+√3 √5 + -√5-√3 √3+1
Khai triển:
a) (2+√3)²
b) (√7-3)²
c) (5+√2)²
d) (√11-5)²
e) (1+√5)² + (3-√5)²
f) (2+√7)² + (√7-3)²
Tính
a,\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
b,\(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
c,\(\left(\sqrt{5-2}\right)\left(\sqrt{5+2}\right)\)
Cmr nếu a+b+c=0 thì:
a) \(10\left(a^7+b^7+c^7\right)=7\left(a^2+b^2+c^2\right)\left(a^5+b^5+c^5\right)\)
b) \(a^5\left(b^2+c^2\right)+b^5\left(c^2+a^2\right)+c^5\left(a^2+b^2\right)=\dfrac{1}{2}\left(a^3+b^3+c^3\right)\left(a^4+b^4+c^4\right)\)
Giúp mình 2 con này cảm ơn mn
C= 2/√2-1/√3-√2+2/√3-1
D= √5-2/5+2√5-1/2+√5+1/√5
cho a b c là các số thực dương thỏa mãn ab^2+bc^2 +ca^2=3 . Chứng minh rằng : (2a^5+3b^5)/ab +(2b^5+3c^5)/bc +(2c^5+3a^5)ca >= 15(a^3 +b^3 +c^3-2)
Chứng minh nếu a+b+c=0 thì:
\(\frac{a^5+b^5+c^5}{5}=\frac{a^3+b^3+c^3}{3}\times\frac{a^2+b^2+c^2}{2}\)