\(C=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(=\frac{5}{3}.\frac{3}{14}=\frac{5}{14}\)
Ta có : \(C=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+......+\frac{10}{1400}\)
\(\Rightarrow C=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+.....+\frac{5}{700}\)
\(\Rightarrow C=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+......+\frac{5}{25.28}\)
\(\Rightarrow C=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+......+\frac{1}{25}-\frac{1}{28}\right)\)
\(\Rightarrow C=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(\Rightarrow C=\frac{5}{3}.\frac{3}{14}=\frac{5}{14}\)