NK

BT4: Cho hai đa thức \(A=\left(\dfrac{1}{3}a-\dfrac{1}{3}b\right)-\left(a-2b\right)\) và \(B=\dfrac{1}{3}a-\dfrac{1}{3}b-\left(a-b\right)\)

Tính A+B và A-B

H24
15 tháng 6 2023 lúc 14:19

\(+\) Rút gọn \(A,B\)

\(A=\left(\dfrac{1}{3}a-\dfrac{1}{3}b\right)-\left(a-2b\right)\)

\(=\dfrac{1}{3}a-\dfrac{1}{3}b-a+2b\)

\(=\left(\dfrac{1}{3}a-a\right)+\left(2b-\dfrac{1}{3}b\right)\)

\(=-\dfrac{2}{3}a+\dfrac{5}{3}b\)

\(B=\dfrac{1}{3}a-\dfrac{1}{3}b-\left(a-b\right)\)

\(=\dfrac{1}{3}a-\dfrac{1}{3}b-a+b\)

\(=\left(\dfrac{1}{3}a-a\right)+\left(b-\dfrac{1}{3}b\right)\)

\(=-\dfrac{2}{3}a+\dfrac{2}{3}b\)

\(+\) Tính \(A+B\)

\(A+B=-\dfrac{2}{3}a+\dfrac{5}{3}b-\dfrac{2}{3}a+\dfrac{2}{3}b\)

\(=\left(-\dfrac{2}{3}a-\dfrac{2}{3}a\right)+\left(\dfrac{5}{3}b+\dfrac{2}{3}b\right)\)
\(=-\dfrac{4}{3}a+\dfrac{7}{3}b\)

\(+\) Tính \(A-B\)

\(A-B=\left(-\dfrac{2}{3}a+\dfrac{5}{3}b\right)-\left(-\dfrac{2}{3}a+\dfrac{2}{3}b\right)\)

\(=-\dfrac{2}{3}a+\dfrac{5}{3}b+\dfrac{2}{3}a-\dfrac{2}{3}b\)

\(=\left(-\dfrac{2}{3}a+\dfrac{2}{3}a\right)+\left(\dfrac{5}{3}b-\dfrac{2}{3}b\right)\)

\(=0+\dfrac{3}{3}b\)

\(=b\)

 

Bình luận (0)
H24
15 tháng 6 2023 lúc 14:39

\(A=\left(\dfrac{1}{3}a-\dfrac{1}{3}b\right)-\left(a-2b\right)\\ A=\dfrac{1}{3}a-\dfrac{1}{3}b-a+2b\\ A=-\dfrac{2}{3}a+\dfrac{5}{3}b\\ \\ \)

\(B=\dfrac{1}{3}a-\dfrac{1}{3}b-\left(a-b\right)\\ B=\dfrac{1}{3}a-\dfrac{1}{3}b-a+b\\ B=-\dfrac{2}{3}a+\dfrac{2}{3}b\\ B=\dfrac{2}{3}\left(-a+b\right) \)
 

\(A+B=-\dfrac{2}{3}a+\dfrac{5}{3}b+\left(-\dfrac{2}{3}a+\dfrac{2}{3}b\right)\\ A+B=-\dfrac{2}{3}a+\dfrac{5}{3}b-\dfrac{2}{3}a+\dfrac{2}{3}b\\ A+B=-\dfrac{4}{3}a+\dfrac{7}{3}b\)

\(A-B=-\dfrac{2}{3}a+\dfrac{5}{3}b-\left(-\dfrac{2}{3}a+\dfrac{2}{3}b\right)\\ A-B=-\dfrac{2}{3}a+\dfrac{5}{3}b+\dfrac{2}{3}a-\dfrac{2}{3}b\\ A-B=\dfrac{5}{3}b-\dfrac{2}{3}b\\ A-B=b\)

Bình luận (1)

Các câu hỏi tương tự
0A
Xem chi tiết
DM
Xem chi tiết
LH
Xem chi tiết
TH
Xem chi tiết
DV
Xem chi tiết
MC
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết