BT1: Chứng minh rằng nếu a,b,c là độ dài ba cạnh của tam giác thì
(a+b-a)(a+b-c)(a+c-b)=<abc
BT2:Cho a,b,c thỏa mãn (a2+b2+c2)2>2(a4+b4+c4)
Chứng minh rằng a,b,c là độ dài các cạnh của tam giác
BT3:Cho a,b,c là 3 cạnh và p là nửa chu vi của tam giác. Chứng minh rằng
\(\dfrac{1}{p-a}\)+\(\dfrac{1}{p-b}\)+\(\dfrac{1}{p-c}\)>=2(\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\))
Bài 1)
Vì \(a,b,c\) là ba cạnh của tam giác nên :
\(a+b-c,b+c-a,c+a-b>0\)
Đặt \((a+b-c,b+c-a,c+a-b)=(x,y,z)\Rightarrow (a,b,c)=\left(\frac{x+z}{2},\frac{x+y}{2},\frac{y+z}{2}\right)\)
BĐT cần CM tương đương:
\((x+y)(y+z)(x+z)\geq 8xyz\) với \(x,y,z>0\)
Áp dụng BĐT AM-GM ta có:
\((x+y)(y+z)(x+z)\geq 2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8xyz\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c\)
Bài 2)
Để đề bài chặt chẽ phải bổ sung điều kiện \(a,b,c>0\)
\((a^2+b^2+c^2)^2>2(a^4+b^4+c^4) \Leftrightarrow 2(a^2b^2+b^2c^2+c^2a^2) >a^4+b^4+c^4\)
\(\Leftrightarrow 4a^2b^2>(c^2-a^2-b^2)^2\Leftrightarrow (2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)>0\)
\(\Leftrightarrow [(a+b)^2-c^2][c^2-(a-b)^2]>0\)
\(\Leftrightarrow (a+b-c)(a+b+c)(c+b-a)(c+a-b)>0\)
\(\Leftrightarrow (a+b-c)(b+c-a)(c+a-b)>0\). Khi đó xảy ra các TH:
+) Cả ba nhân tử \(a+b-c,b+c-a,c+a-b>0\) đồng nghĩa với \(a,b,c\) là ba cạnh tam giác
+ ) Tồn tại một nhân tử nhỏ hơn $0$ sẽ kéo theo bắt buộc phải có thêm một nhân tử nhỏ hơn $0$ nữa. Giả sử \(\left\{\begin{matrix} a+b-c<0\\ b+c-a<0\end{matrix}\right.\Rightarrow 2b < 0\) (vô lý)
Vậy ta có đpcm
Bài 3)
Áp dụng BĐT Bunhiacopxki:
\(\left(\frac{1}{p-a}+\frac{1}{p-b}\right)(p-a+p-b)\geq 2^2=4\Rightarrow \frac{1}{p-a}+\frac{1}{p-b}\geq \frac{4}{2p-a-b}\)
\(\Leftrightarrow \frac{1}{p-a}+\frac{1}{p-b}\geq \frac{4}{c}\)
Thực hiện tương tự với các cặp còn lại và cộng theo vế, ta thu được:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\geq 2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow \triangle ABC\) đều.
BT1:Ta có: \(\left(b-c\right)^2\ge0\forall b,c>0\)
\(-\left(b-c\right)^2\le0\forall b,c>0\)
<=> \(a^2-\left(b-c\right)^2\le a^2\forall b,c,a>0\)
<=>(a-b+c)(a+b-c)\(\le\)\(a^2\) (1)
Tương tự: (c-a+b)(c+a-b)\(\le c^2\) (2)
(b-a+c)(b+a-c)\(\le b^2\) (3)
Nhân vế với vế của (1)(2)(3) ta có:\(\left(a-b+c\right)^2\left(a+b-c\right)^2\left(-a+b+c\right)^2\le a^2b^2c^2\)
Vì a,b,c là 3 cạnh tam giác nên abc>0
=>(a-b+c)(a+b-c)(-a+b+c)\(\le abc\)