Đại số lớp 8

TB

Bài 1: Cho a,b,c là 3 cạnh của tam giác. Chứng minh rằng:

\(\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)<2

Bài 2: Cho a,b,c là các số dương thỏa mãn \(\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2-a^2+c^2}{2bc}+\dfrac{c^2-b^2+a^2}{2ac}\)>1

Chứng minh rằng a,b,c là 3 cạnh của tam giác

Bài 3:Cho a,b,c>0. Chứng minh rằng \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{b+a}+\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{b+a}{c}\)

H24
21 tháng 3 2017 lúc 21:57

Bài 1:a,b,c ba cạnh tam giác => a,b,c dương

\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)

\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)

\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)

p/s: đề sao làm vậy:

mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn

Bình luận (4)

Các câu hỏi tương tự
TB
Xem chi tiết
LO
Xem chi tiết
TB
Xem chi tiết
TB
Xem chi tiết
SV
Xem chi tiết
TH
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
AQ
Xem chi tiết