a) (a+b)(c+d) = a(c+d) + b(c+d) = ac + ad + bc + bd
(a+d)(b+c) = a(b+c) + d(b+c) = ab + ac + db + dc
=> (a+b)(c+d) - (a+d)(b+c) = ac + ad + bc + bd - (ab + ac + db + dc)
= ac + ad + bc + bd - ab - ac - db - dc
=(ac - ac) + ad + bc + bd - ab - db - dc = ad + bc + bd - ab - db - dc
b) (a+b)(c-d) = a(c-d) + b(c-d) = ac - ad + bc - bd
(a-b)(c+d) = a(c+d) - b(c+d) = ac +ad -bc - bd
=> (a+b)(c-d) - (a-b)(c+d) = ac - ad + bc - bd - (ac +ad -bc - bd)
= ac - ad + bc - bd - ac - ad + bc + bd
= (ac - ac) + (-ad - ad) + (bc+bc) + (-bd + bd) = -2ad + 2bc
c) (a+b)2 = (a+b)(a+b) = a(a+b) + b(a+b) = a2 + ab + ba + b2 = a2 + 2ab + b2
(a - b)2 = (a-b)(a-b) = a(a-b) - b(a-b) = a2 - ab - ba + b2 = a2 - 2ab + b2
=> (a+b)2 - (a - b)2 = a2 + 2ab + b2 - (a2 - 2ab + b2 )
= a2 + 2ab + b2 - a2 + 2ab - b2 =(a2 - a2 ) + (b2 - b2 ) + 2ab + 2ab = 4ab