Ta có \(\sin^2\alpha+\cos^2\alpha=1\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha=1-\left(\frac{8}{17}\right)^2=\frac{225}{289}\)
Vậy B=\(4.\left(\frac{8}{17}\right)^2+3.\frac{225}{289}=\)\(\frac{931}{289}\)
huhu. Mẹ ơi! Làm sao thắng nó!!!
Ta có \(\sin^2\alpha+\cos^2\alpha=1\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha=1-\left(\frac{8}{17}\right)^2=\frac{225}{289}\)
Vậy B=\(4.\left(\frac{8}{17}\right)^2+3.\frac{225}{289}=\)\(\frac{931}{289}\)
huhu. Mẹ ơi! Làm sao thắng nó!!!
1. Tìm x, biết:
a. \(\tan x+\cot x=2\)
b. \(\sin x.\cos x=\frac{\sqrt{3}}{4}\)
2.
a. Biết \(\tan\alpha=\frac{1}{3}\)Tính A=\(\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
b. Biết \(\sin\alpha=\frac{2}{3}\)Tính B=\(3.\sin^2\alpha+4.\cos^2\alpha\)
c. Tính C=\(\sin^210^o+\sin^220^o+\sin^270^o+\sin^280^o\)
d. Tính D=\(\tan20^o.\tan35^o.\tan55^o.\tan70^o\)
e. Tính E=\(\sin^6\alpha+\cos^6\alpha+3.\sin^2\alpha.\cos^2\alpha\)
f. Tính F=\(3.\left(\sin^3\alpha+\cos^3\alpha\right)-2.\left(\sin^6\alpha+\cos^6\alpha\right)\)
g. Tính G=\(\sqrt{\sin^4\alpha+4.\cos^2\alpha}+\sqrt{\cos^4\alpha+4.\sin^2\alpha}\)
Mọi người giúp mình với. Mình cảm ơn ạ!
tính
a) \(\tan^2\alpha-\sin^2\alpha-\tan^2\alpha\times\sin^2\alpha\)
b)\(\frac{sin^4\alpha-cos^4\alpha}{sin\alpha+cos\alpha}-sin\alpha+cos\alpha\)
Cho tan \(\alpha\)=\(\frac{3}{5}\). Tính
A= \(\frac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
B=\(\frac{\sin\alpha\cdot\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
C=\(\frac{\sin^3\alpha\cdot\cos^3\alpha}{2\sin\alpha\cdot\cos^2\alpha+\cos\alpha\cdot\sin^2\alpha}\)
Giúp mình với . MÌnh cảm ơn
Cho góc nhọn \(\alpha\)thỏa mãn \(\tan\alpha=\frac{2}{\sqrt{3}}\). Tính: \(B=\frac{\cos^4\alpha+\sin^2\alpha\left(\cos^2\alpha+1\right)}{2\cos^4\alpha+2\sin^2\cos^2-\frac{3}{5}\sin^2\alpha}\)
Chứng minh:
a) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
b) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{17\cos\alpha}\)
tính :
\(E=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha\cdot\cos^2\alpha\)
\(F=3\sin^3\alpha+\cos^3\alpha-2\sin^6\alpha+\cos^6\alpha\)
\(G=\sqrt{\sin^4\alpha+4\cos^2\alpha}+\sqrt{\cos^4\alpha+4\sin^2\alpha}\)
Chứng minh:
a)\(\cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
b)\(\frac{cos\alpha}{1-sin\alpha}=\frac{1+sin\alpha}{cos\alpha}\)
c)\(\frac{\left(sin\alpha+cos\alpha\right)^2-\left(sin\alpha-cos\alpha\right)^2}{sin\alpha.cos\alpha}=4\)
Mình cần gấp!!!
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha\)
a) A = \(\frac{\cot^2\alpha-\cos^2\alpha}{\cot^2\alpha}-\frac{\sin\alpha.\cos\alpha}{\cot\alpha}\)
b) B = \(\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2+\cos^4\alpha-\sin^4\alpha-2\cos^2\alpha\)
c) C = \(\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
CMR: \(\frac{\sin^4\alpha-\cos^2\alpha+2\cos^4\alpha-\cos^6\alpha}{\cos^4\alpha-\sin^2\alpha+2\sin^4\alpha-\sin^6\alpha}=\tan^6\alpha\)