Cho phương trình 2 log 4 2 x 2 - x + 2 m - 4 m 2 + log 1 2 x 2 + m x - 2 m 2 = 0 . Biết rằng S = a ; b ∪ c ; d , a < b < c < d là tập hợp các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn x 1 2 + x 2 2 > 1 . Tính giá trị biểu thức A = a + b + 5c + 2d.
A. A = 1
B. A = 2
C. A = 0
D. A = 3
Biết a b (trong đó a b là phân số tối giản, a , b ∈ N * ) là giá trị thực của tham số m để hàm số y = 2 x 3 - 3 m x 2 - 6 ( 3 m 2 - 1 ) x + 2018 có hai điểm cực trị x1;x2 thỏa mãn x 1 x 2 + 2 ( x 1 + x 2 ) = 1 . Tính P=a+2b.
Xét các số nguyên dương a,b sao cho phương trình a ln 2 x + b ln x + 5 = 0 có hai nghiệm phân biệt x 1 ; x 2 và phương trình 5 log 2 x + b log x + a = 0 có hai nghiệm phân biệt x 3 ; x 4 thỏa mãn x 1 x 2 > x 3 x 4 . Tìm giá trị nhỏ nhất S m i n của S = 2a+3b.
A. Smin = 25
B. Smin = 17
C. Smin = 30
D. Smin = 33
Giả sử a, b là các số thực sao cho x3 + y3 = a.103x + b.102x đúng với mọi số thực dương x, y, z thỏa mãn log (x + y) = z và log(x2 + y2) = z + 1. Giá trị của a+b bằng:
A. - 31 2
B. - 25 2
C. 31 2
D. 29 2
Cho a , b , c , x , y , z là các số thực thay đổi thỏa mãn ( x + 1 ) 2 + ( y + 1 ) 2 + ( z - 2 ) 2 = 4 và a + b + c = 6 . Tính giá trị nhỏ nhất của P = ( x - a ) 2 + ( y - b ) 2 + ( z - c ) 2 . .
Số nghiệm của phương trình l g ( x 2 - 6 x + 7 ) = l g ( x - 3 ) là
A. 2 B. 1
C. 0 D. Vô số
Số nghiệm của phương trình lg( x 2 - 6x + 7) = lg(x - 3) là
A. 2 B. 1
C. 0 D. Vô số
Biết rằng phương trình 9 x 2 - 2 x . 7 x = 7 9 . Có hai nghiệm phân biệt là x1; x2. Tổng x1+x2 có dạng log 9 a b với a ; b nguyên dương và a b là phân số tối giản. Tính S = a + 2b
A. 95
B. 100
C. 36
D. 32
Biết rằng phương trình 3 + 5 2 + 3 3 - 5 2 = 2 x + 2 có hai nghiệm phân biệt là x 1 > x 2 . Nghiệm x 1 có dạng log a + b 5 2 9 , với a; b nguyên dương. Tính S = a4 + 10ab
A. 2611
B. 2681
C. 2422
D. 2429