Lời giải:
$x-y=2\Rightarrow x=y+2$
$C=|x+1|+|2y+1|=|y+2+1|+|2y+1|=|y+3|+|2y+1|$
Nếu $y\geq \frac{-1}{2}$ thì:
$C=y+3+2y+1=4y+4\geq 4.\frac{-1}{2}+4=2$
Nếu $\frac{-1}{2}> y\geq -3$ thì:
$C=y+3+[-(2y+1)]=2-y> 2-\frac{-1}{2}=2,5$
Nếu $y< -3$ thì:
$C=-y-3-2y-1=-4y-4=-4(y+1)> -4(-3+1)=8$
Từ các TH trên suy ra $C_{\min}=2$ khi $y\geq \frac{-1}{2}$