H24

Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a^2 chia 5 dư 1

AN
11 tháng 9 2018 lúc 16:25

Ta co:

\(a=5n+4\)

\(\Rightarrow a^2=\left(5n+4\right)^2=25n^2+40n+16\)

cai này chia 5 dư 1

Bình luận (0)
DH
11 tháng 9 2018 lúc 16:33

Theo đề, a chia 5 dư 4 => a = 5k + 4 (k thuộc N)

Vì hai số đều là các số tự nhiên

Bình phương hai vế ta được: a2 = (5k + 4)2 = (5k)2+2.5k.4+42 =  25k2 + 40k + 16

Vì 25k2 chia hết cho 5

     40k chia hết cho 5

Mà 16 chia 5 dư 1

Vậy 25k2 + 40k + 16 chia 5 dư 1

=> ĐPCM

Bình luận (0)
H24
13 tháng 1 2019 lúc 16:34

\(Đặt:a=5a+4\)

\(\Rightarrow a^2=\left(5a+4\right)\left(5a+4\right)=25a^2+40a+16\)

chia 5 dư 1 đpcm

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
H24
Xem chi tiết
PQ
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
TN
Xem chi tiết
NA
Xem chi tiết
PH
Xem chi tiết
LN
Xem chi tiết