Lời giải:
\(2\sin a\cos a=(\sin a+\cos a)^2-(\sin ^2a+\cos ^2a)\)
\(=(\sqrt{2})^2-1=1\Rightarrow \sin a\cos a=\frac{1}{2}\)
Do đó:
\(\cos ^3a+\sin ^3a=(\cos a+\sin a)(\cos ^2a-\cos a\sin a+\sin ^2a)\)
\(=\sqrt{2}(1-\frac{1}{2})=\frac{\sqrt{2}}{2}\)