Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Biết rằng parabol
y
=
1
24
x
2
chia hình phẳng giới hạn bởi elip có phương trình
x
2
16
+
y
2
1
=
1
thành hai
phần có diện tích lần lượt là
S
1
,
S
2
với
S
1
<
S
2
. Tỉ số
S
1
S
2
bằng
Cho hình phẳng (H) giới hạn bởi các đường y = - x 2 + 5 x - 4 và trục hoành. Đường thẳng x=2 chia (H) thành hai hình phẳng ( H 1 ) ; H 2 có diện tích lần lượt là S 1 , S 2 , S 1 < S 2 . Khi đó tỉ số S 1 S 2 là
A. 7/6
B. 10/3
C. 10/7
D. 20/7
Cho hình phẳng giới hạn bởi hai đồ thị hàm số y = log 2 x ; y = 0 ; x = 4 Đường thẳng x= 2 chia hình phẳng đó thành hai hình có diện tích là S 1 > S 2 Tỉ lệ diện tích S 1 - 1 S 2 là:
A. 2.
B. 7/4
C. 3.
D. Đáp án khác
Xét hình phẳng (H) được giới hạn bởi hàm số y = x 2 , đường thẳng y = k 2 với 0 ≤ k ≤ 1 ; trục tung và đường thẳng x=1. Biết (H) được chia thành hai phần có diện tích S 1 S 2 như hình vẽ. Gọi k 1 , k 2 lần lượt là giá trị của k làm cho tổng S 1 + S 2 có giá trị lớn nhất và nhỏ nhất. Tính giá trị của T = k 1 + k 2
Hình phẳng giới hạn bởi đồ thị hàm số y = e x . sin x và các đường thẳng x = 0, x = π, trục hoành. Một đường x = k cắt diện tích trên tạo thành 2 phần có diện tích bằng S 1 , S 2 sao cho ( 2 S 1 + 2 S 2 - 1 ) = ( 2 S 1 - 1 ) 2 khi đó k bằng:
A. π 4
B. π 2
C. π 3
D. π 6
Cho (H) là hình phẳng giới hạn bởi parabol y = 3 2 x 2 và nửa đường elip có phương trình y = 1 2 4 - x 2 (với - 2 ≤ x ≤ 2 ) (phần tô đậm trong hình vẽ). Diện tích của (H) bằng:
A. 2 π + 3 6
B. 2 π + 3 12
C. 2 π - 3 6
D. 4 π + 3 6
Cho hình thang cong (H) giới hạn bởi các đường y = 3 x , y = 0 , x = 0 , x = 2 . Đường thẳng x=t (0<t<2) chia (H) thành hai phần có diện tích S1 và S2 (như hình vẽ). Tìm t để S1=3 S2
Cho hình thang cong (H) giới hạn bởi các đường y = 3 x , y=0, x=0, x=2. Đường thẳng x=t chia H thành hai phần có diện tích S 1 và S 2 (như hình vẽ). Tìm t để S 1 = 3 S 2
Cho hàm số bậc ba y=f(x) có đồ thị (C) như hình vẽ. Biết đồ thị hàm số đã cho cắt trục Ox tại 3 điểm có hoành độ x 1 , x 2 , x 3 theo thứ tự lập thành cấp số cộng và x 3 - x 1 = 2 3 . Gọi diện tích hình phẳng giới hạn bởi (C) và trục Ox là S. Diện tích S 1 của hình phẳng giới hạn bởi các đường y = f x + 1 , y = - f x - 1 , x = x 1 và x = x 3 bằng
A. .
B. .
C. .
D. .