Trong mặt phẳng với hệ tọa độ Oxy , cho điểm M (2;1) và đường thẳng d: x-y+1=0. Viết phương trình đường tròn đi qua M cắt d ở 2 điểm A, B phân biệt sao cho tam giác MAB vuông tại M và có diện tích bằng 2.
trong mặt phẳng hệ tọa độ Oxy cho hình thang cân ABCD có hai đường chéo BD và AC vuông góc với nhau tại H và AD 2 BC. Gọi M là điểm nằm trên cạnh AB sao cho AB 3 AM N là trung điểm HC. biết B 1 3 đường thẳng HM đi qua T 2 3 đường thẳng DN có phương trình x 2y 2 0 . tìm tọa độ các điểm A,C,D
cho đường thẳng d:x+y+2=0 và đường tròn (C): x^2+y^2-4x-2y=0. Gọi I là tâm đường tròn (C), M là điểm thuộc d. qua M kẻ tiếp tuyến MA với (C) và 1 cát tuyến cắt (C) tại B,C. Tìm tọa độ điểm M biết tam giác ABc vuông tại B và có diện tích bằng 5
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=√5AE5AE ( biết O là gốc tọa độ và m lớn hơn 0 ).
Câu 59. Trong mặt phẳng tọa độ Oxy, cho đường thẳng A:3x - 4y -31 = 0 và điểm A(1;-7). Tìm tọa độ tâm của các đường tròn tiếp xúc với A tại A và có bán kính R = 5.
A. 11(-2; –3), 12(4;–11).
B. 11(2;3), 12(-4;11).
C. 11(2;–3), 12(4;–11).
D. 11(-2;3), 12(4; -11).
Trong mặt phẳng tọa độ Oxy, cho các điểm M(0,4) và P(9, -3) .Tọa độ điểm N đối xứng với điểm M qua điểm P là : A. N(18,10) B. N(18, -10) C. N(9/2 ; 1/2) D. N(9; -7)
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có đỉnh A(2;-3) , B(3:-2) và trọng tâm G nằm trên đường thẳng d: 3x-y-8=0
a, Tìm tọa độ M trên trục hoành sao cho d(M;AB) = \(\sqrt{2}\)
b, tìm tọa độ điểm C biết tam giác ABC có diện tích bằng \(\frac{3}{2}\)
Trong mặt phẳng tọa độ Oxy, Cho tam giác ABC biết A(–2 ; 2), B(2 ; – 1), C(5 ; 3 ) và điểm E(–1; 0 ). a) Chứng minh rằng tam giác ABC cân.Tính diện tích tam giác ABC. b) Tìm tọa độ các điểm M(m; 2m-5) sao cho MO=\(\sqrt{5}AE\) ( biết O là gốc tọa độ và m lớn hơn 0 ).
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) :y=mx-3 tham số m và Parabol (P): y=y2 . Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có hoành độ lần lượt là x1,x2 thỏa mãn |x1-x2|=2