Biết I = ∫ 1 3 x + 2 x d x = a + b ln c ,với a , b , c ∈ ℤ , c < 9. Tính tổng S = a + b + c .
A. S = 7.
B. S = 5.
C. S = 8.
D. S = 6.
Tìm nguyên hàm của hàm số f ( x ) = 2008 + ln 2 x x có
dạng F ( x ) = a ln x + ln x 3 b + C . Khi đó tổng S
= a + b là?
A. 2012
B. 2010
C. 2009
D. 2011
Nguyên hàm của hàm I = ∫ 1 - x 5 x 1 + x 5 d x có dạng a ln x 5 + b ln 1 + x 5 + C . Khi đó S = 10a + b bằng
A. 1
B. 2
C. 0
D. 3
Nguyên hàm của hàm I = ∫ 1 - x 5 x 1 + x 5 d x có dạng a ln x 5 + b ln 1 + x 5 + C . Khi đó S = 10a + b bằng
A. 1
B. 2
C. 0
D. 3
Biết rằng ∫ 1 2 ln ( x + 1 ) d x = a ln 3 + b ln 2 + c với a, b, c là các số nguyên. Tính S = a +b + c.
A. S = 1
B. S = 0
C. S = 2
D. S = -2
Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405
Cho các mệnh đề sau:
(I). Nếu a = b c t h ì 2 ln a = ln b + ln c
(II). Cho số thực 0 < a ≠ 1. Khi đó a - 1 log a x ≥ 0 ⇔ x ≥ 1
(III). Cho các số thực 0 < a ≠ 1 , b > 0 , c > 0 . Khi đó b log a c ≥ 0 ⇔ x ≥ 1
(IV). l i m x → + ∞ 1 2 x = - ∞ .
Số mệnh đề đúng trong các mệnh đề trên là
A. 3
B. 4
C. 2
D. 1
Biết ∫ 3 4 d x ( x + 1 ) ( x - 2 ) = a ln 2 + b ln 5 + c với a, b, c là các số hữu tỉ.
Tính S = a – 3b + c
A. S = 3
B. S = 2
C. S = -2
D. S = 0
Cho dãy số u n xác định bởi u 1 = 0 và u n + 1 = u n + 4 n + 3 với ∀ n ≥ 2 . Biết rằng dãy số thỏa mãn l i m u n + u 4 n + u 4 2 n + . . . + u 4 2018 n u n + u 2 n + u 2 2 n + . . . + u 2 2018 n = a 2019 + b c với a, b, c là các số nguyên dương và b < 2019. Tính giá trị của S = a + b - c
A. S = -1
B. S = 0
C. S = 2017
D. S = 2018