Cho a,b,c là các số tự nhiên khác 0 biết \(\frac{28}{29}<\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1\)
tìm GTNN của S=a+b+c
Cho a, b, c là số nguyên dương. \(\frac{28}{29}\)< \(\frac{1}{a}\)+ \(\frac{1}{b}\)+ \(\frac{1}{c}\)< 1. Tìm giá trị nhỏ nhất của S= a+b+c
Cho a,b,c là các số tự nhiên khác 0. Biết \(\frac{28}{29}\)<\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)<1. Tính min của tổng S=a+b+c
1. Tính:a) A=1253.24; b) B=\(\frac{1}{49^4}\).77; c) C=\(\frac{27^3+9^5}{81^3+3^{11}}\); d) D=\(\frac{\frac{4}{9}+\frac{28}{15}-\frac{12}{4}}{\frac{5}{9}+\frac{35}{15}-\frac{15}{4}}\)
2. a) Tìm GTNN của A= (2x-3)2-7; b) Tìm GTLN của 3- giá trị tuyệt đối của 3x-2
3. Tìm sốx nguyên để các số sau là số nguyên: a)A= 2+\(\frac{3}{x+1}\);b) B=\(\frac{3x-1}{x-1}\)
1,TÌm GTNN của P biết P=\(\frac{12}{x^2+\left|y-13\right|+14}\)
2,Tìm số nguyên n để P=\(\frac{n+2}{n-5}\)có giá trị lớn nhất
3,Cho n là số tự nhiên có 2 chữ số.Tìm n biết n+4 và 2n đều là số chính phương
4,cho a,b,c khác 0 và a+b+c khác 0 thỏa mãn
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\)
Tính B=\(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{b}\right)\)
5, So sánh \(\left(-32\right)^{27}\)và\(\left(-18\right)^{39}\)
6,Tìm GTLN của S=\(\frac{x^2+2016}{x^2+2015}\)
GIẢI DÙM MK VS MK ĐANG CẦN GẤP
MƠN MN TRƯỚC
Bài 1: Tìm số tự nhiên n để phân số \(\frac{7n-8}{2n-3}\)có GTLN.
Bài 2: Tìm x, biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\).
Bài 3: Cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\).
Tính S=\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
tìm GTNN của A=\(\frac{1}{x-3}\);B=\(\frac{7-x}{x-5}\);C=\(\frac{5x-19}{x-4}\)biết x và A,B,C thuộc Z
1/ Tính
a) \(P=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)
b) Cho \(a+b+c=2010\)và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
2/ Tìm x biết
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}...\frac{30}{62}\cdot\frac{31}{64}=2^x\)
3/ Tìm \(a_1;a_2;a_3;...;a_{100}\)biết \(\frac{a_1-1}{100}=\frac{a_2-2}{99}=\frac{a_3-3}{98}=...=\frac{a_{100}-100}{1}\)và \(a_1+a_2+a_3+...+a_{100}=10100\)
tính:
a) \(\frac{11}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)
b) \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{29}{42}:\frac{1}{28}-8\)