H24

Biết biểu thức P=\(\sqrt{\frac{1}{4}+\frac{1}{1^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{4}+\frac{1}{3^2}+\frac{1}{5^2}}+\sqrt{\frac{1}{4}+\frac{1}{5^2}+\frac{1}{7^2}}\)\(+...+\sqrt{\frac{1}{4}+\frac{1}{799^2}+\frac{1}{801^2}}\)có giá trị bằng \(\frac{a}{b}\) với a, b là các số nguyên dương và \(\frac{a}{b}\) là phân số tối giản . Khi đó giá trị biểu thức Q= a-200b

ND
16 tháng 6 2021 lúc 14:45

Xét bài toán phụ sau:

Nếu \(a+b+c=0\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)  \(\left(a,b,c\ne0\right)\)

Thật vậy

Ta có: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{a+b+c}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{0}{abc}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

Bài toán được chứng minh

Quay trở lại, ta sẽ áp dụng bài toán phụ vào bài chính:

Ta có: \(P=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}+...+\sqrt{\frac{1}{2^2}+\frac{1}{779^2}+\frac{1}{801^2}}\)

Vì \(2+1+\left(-3\right)=0\) nên:

\(\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{3^2}}=\sqrt{\frac{1}{2^2}+\frac{1}{1^2}+\frac{1}{\left(-3\right)^2}}=\sqrt{\left(\frac{1}{2}+\frac{1}{1}-\frac{1}{3}\right)^2}=\frac{1}{2}+1-\frac{1}{3}\)

Tương tự ta tính được:

\(\sqrt{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{5^2}}=\frac{1}{2}+\frac{1}{3}-\frac{1}{5}\) ; ... ; \(\sqrt{\frac{1}{2^2}+\frac{1}{799^2}+\frac{1}{801^2}}=\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)

\(\Rightarrow P=\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2}+\frac{1}{799}-\frac{1}{801}\)

\(=\frac{1}{2}\cdot400+\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{799}-\frac{1}{801}\right)\)

\(=200+\frac{800}{801}=\frac{161000}{801}=\frac{a}{b}\Rightarrow\hept{\begin{cases}a=161000\\b=801\end{cases}}\)

\(\Rightarrow Q=161000-801\cdot200=800\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
TA
Xem chi tiết
HT
Xem chi tiết
NP
Xem chi tiết
LQ
Xem chi tiết
HK
Xem chi tiết