Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Cho a,b thỏa mãn a + 2b = 1
Tìm GTLN của: 2011 . a^2 + 2ab + 2008 . 2011
b) Cho x,y thỏa mãn x^2 + 2xy + 6x + 6y + 2y^2 + 8 = 0
Tìm GTLN và GTNN của: B = x + y + 2016
Cho a,b là các số thực dương thỏa mãn a^2+2ab+2b^2-2b=8
1,CMR 0<a+b< hoặc = 3
2,Tìm min P=a+b+8/a+2/b
CMR: a,b,c là độ dài 3 cạnh tam giác thỏa mãn biết
a+b=c thì ta có a^2+b^2+c^2+2ab-ac-bc=0
Cho a,b.c là 3 số thực thỏa mãn a+b+c=1\2 và (a+b)(b+c)(c+a) khác 0
Tính giá trị biểu thức : P=2ab+c\(a+b)^2 * 2bc+a\(b+c)^2 * 2ca+b\(c+a)^2
Cho các số nguyên a,b,c thỏa mãn a^2+b^2=c^2 và 3a^2+2ab+3b^2=12.Hãy chứng tỏ 3<=c^2<=6 và tìm giá trị của a,b,c
Cho a,b,c thỏa mãn: a+b+c=2. Tìm Max P = 2ab+bc+ca
Cho a,b là các số thực dương thỏa mãn
a^2+2ab+2b^2-2b=8
a)Chứng minh rằng :0<a+b<=3 (<= là bé hơn hoặc bằng)
b)tìm GTNN của biểu thức P=a+b+8/a+2/b
Cho 2 số thực dương a,b thỏa mãn: a2+2ab+2b2-2b=8.
Cmr : 0<a+b <=3Tìm giá trị nhỏ nhất của biểu thức P=a+b+8/a+2/b