Xét hàm số y = f(x) liên tục trên miền D = [a;b] có đồ thị là một đường cong C. Gọi S là phần giới hạn bởi C và các đường thẳng x = a; x = b Người ta chứng minh được rằng độ dài đường cong S bằng ∫ a b 1 + ( f ' ( x ) ) 2 d x Theo kết quả trên, độ dài đường cong S là phần đồ thị của hàm số f(x) = ln x và bị giới hạn bởi các đường thẳng x = 1 ; x = 3 là m - m + ln 1 + m n với m , n ∈ R thì giá trị của m 2 - m n + n 2 là bao nhiêu?
A. 6
B. 7
C. 3
D. 1
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
Biết ∫ 1 2 ln x x d x = a ln 2 + b c (với a là số hữu tỉ, b, c là các số nguyên dương và b c là phân số tối giản). Tính giá trị của S=2a+3b+c.
Biết ∫ 1 2 ln x x 2 d x = a ln 2 + b c (với a là số hữu tỉ, b, c là các số nguyên dương và b c là phân số tối giản). Tính giá trị của S = 2 a + 3 b + c
Gỉa sử \(\int\limits^5_3\dfrac{dx}{x^2-x}=aIn5+bIn3+cIn2\times\left(a,b,c\varepsilon Z\right)\) Tính giá trị biểu thức S\(-2a+b+3c^2\)
A. S= 3
B. S= 6
C. S= 0
D. S= -2
Giải các bất phương trình sau:
a) (2x − 7)ln(x + 1) > 0;
b) (x − 5)(logx + 1) < 0;
c) 2 log 3 2 x + 5 log 2 2 x + log 2 x – 2 ≥ 0
d) ln(3 e x − 2) ≤ 2x
Cho vật thể H nằm giữa hai mặt phẳng x = 0; x = 1 . Biết rằng thiết diện của vật thể H cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x là một tam giác đều có cạnh là ln ( 1 + x ) 4 . Giả sử thể tích V của vật thể có kết quả là V = a b ( c ln 2 - 1 ) với a, b, c là các số nguyên. Tính tổng S = a 2 - a b + c
A. 6
B. 8
C. 7
D. 9
Cho vật thể H nằm giữa hai mặt phẳng x=0;x=1. Biết rằng thiết diện của vật thể H cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x( 0 ≤ x ≤ 1 ) là một tam giác đều có cạnh là 4 ln ( 1 + x ) Giả sử thể tích V của vật thể có kết quả là V = a b ( c ln 2 - 1 ) với a, b, c là các số nguyên. Tính tổng S= a 2 - a b + c
Trong không gian Oxyz, cho hai điểm A (0; 8; 2), B (9; -7; 23) và mặt cầu (S) có phương trình (S): (x - 5)2 + ( y + 3 )2 + (z + 2)2 = 72. Mặt phẳng (P): x + by + cz + d = 0 đi qua điểm A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) lớn nhất. Giá trị của b + c + d khi đó là:
A. b + c + d = 2
B. b + c + d = 4
C. b + c + d = 3
D. b + c + d = 1