Cho các số thực dương \(a;b;c\) thỏa mãn : \(a+b+c=3\). Chứng minh rằng :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
Cho các số thực dương \(a;b;c\) thỏa mãn :\(ab+bc+ca=abc\). Chứng minh rằng :
\(\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}\le\dfrac{1}{6}\).
P/s: Em xin phép nhờ quý thầy cô và các bạn bè hỗ trợ và giúp đỡ với ạ. Em cám ơn rất nhiều!
Bài 1. Cho a < b. So sánh: a/ 2a và a + b b/ - 3a và - 3b c/ 2a và 2b
Bài 2. Cho a < b. Chứng tỏ : a/ 2a – 3 < 2b – 3 b/ 3a + 1 < 3b + 1
Bài 3. a/ Cho m > n . Chứng minh : 2m – 3 > 2n - 4
b/ Cho a < b . Chứng minh: 2a - 3 < 2b + 5
với 0 <= a,b,c <=1
cmr (2(a^3 +b^3 +c^3)<3 +a^2b +b^2c +c^2a)
Gíup mình nhé, mình cảm ơn nhiều
1, Khai triển các đẳng thức sau
a/ (2a+3b)2 ; b/ (3a+5) (5-3a) ; c/ (x2-3y)2
2, Chứng minh rằng
a/ (2a+3)2+(3a-2)2=13(a2+1)
b/ (2a+3b)2-(2a-3b)2=24ab
c/ (1-2a) (1+2a) (1+4a2)=1-16a4
Cho các số thực dương \(a;b;c\) thỏa mãn \(a.b.c=1\). Chứng minh rằng :
\(\dfrac{1}{a^2+2.b^2+6}+\dfrac{1}{b^2+2c^2+6}+\dfrac{1}{c^2+2a^2+6}\le\dfrac{1}{3}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ 1 câu trong đề cương toán lớp 10 với ạ. Em cám ơn nhiều ạ!
Cho a, b, c > 0 thỏa mãn điều kiện abc = 1. Tìm GTNN của:
\(T=\dfrac{bc}{a^2b+a^2c}+\dfrac{ca}{b^2c+b^2a}+\dfrac{ab}{c^2a+c^2b}\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho a,b,c > 0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\)≥\(1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)