\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(2B=1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{2^{99}}\)
\(=>B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\right)\)
\(B=1-\dfrac{1}{2^{99}}< 1=>B< 1\)
\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)
\(2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)
\(B=1-\dfrac{1}{2^{100}}< 1\left(đpcm\right)\)
Vậy \(B< 1\)