PB

Bạn Mai vẽ tia phân giác của một góc như sau: đánh dấu trên hai cạnh của bốn góc bốn đoạn thẳng bằng nhau: OA = AB = OC = CD (hình dưới). Kẻ các đoạn AD, BC chúng cắt nhau ở K. Hãy giải thích vì sao OK là tia phân giác của góc O.

Hướng dẫn: chứng minh rằng:

 ΔKAB=ΔKCD

CT
15 tháng 6 2017 lúc 16:55

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Suy ra: ∠D = ∠B(hai góc tương ứng)

Và ∠C1 =∠A1 (hai góc tương ứng)

Lại có: ∠C1+∠C2 =180°(hai góc kề bù)

Và ∠A1+∠A2=180°(hai góc kề bù)

Suy ra: ∠C2 =∠A2

Xét ΔKCD và ΔKAB, ta có:

∠B = ∠D (chứng minh trên )

CD=AB (gt)

∠C2 =∠A2 (chứng minh trên)

suy ra: ΔKCD= ΔKAB,(g.c.g)

=>KC=KA (hai cạnh tương ứng)

Xét ΔOCK và ΔOAK, ta có:

OC = OA (gt)

OK chung

KC = KA (chứng minh trên)

Suy ra: ΔOCK = ΔOAK (c.c.c)

=> ∠O1=∠O2̂(hai góc tương ứng)

Vậy OK là tia phân giác góc O

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
BN
Xem chi tiết
TD
Xem chi tiết
QT
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
PM
Xem chi tiết
AN
Xem chi tiết
NH
Xem chi tiết