Ôn tập toán 7

DN

Bài1: Cho \(ac=b^2;bd=c^2\)

CMR \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

Bài2: Cho \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)

Tính N= \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

GIÚP MÌNH VS!!!! ĐANG CẦN GẤP

H24
7 tháng 8 2017 lúc 15:48

Bài 2 :

Ta có :

\(\dfrac{2a+b+c}{a}=\dfrac{a+2b+c}{b}=\dfrac{a+b+2c}{c}\)

\(\Rightarrow\dfrac{2a+b+c}{a}-1=\dfrac{a+2b+c}{b}-1=\dfrac{a+b+2c}{c}-1\)\(\Rightarrow\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)

* Nếu \(a+b+c=0\), Ta suy ra các đẳng thức sau :

\(\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

Thay các đẳng thức vừa tìm được vào N, ta có :

\(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

\(\Leftrightarrow N=\dfrac{-c}{c}+\dfrac{-a}{a}+\dfrac{-b}{b}\)

\(\Leftrightarrow N=-1+\left(-1\right)+\left(-1\right)=-3\)

* Nếu \(a+b+c\ne0\)

Để \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)

\(\Rightarrow a=b=c\)

\(\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

Thay các đẳng thức vào N ta có :

\(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

\(\Leftrightarrow N=\dfrac{2c}{c}+\dfrac{2a}{a}+\dfrac{2b}{b}=2+2+2=6\)

Vậy.....

tik mik nha !!!

Bình luận (1)

Các câu hỏi tương tự
NB
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
CA
Xem chi tiết
CB
Xem chi tiết
H24
Xem chi tiết