Ôn tập toán 7

NL

cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a,b,c,d\ne0\right)\)

Tính \(A=\frac{2011a-2010b}{c+d}+\frac{2011b+2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)

DH
19 tháng 1 2017 lúc 11:02

Áp dụng TC DTSBN ta có :

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{a}{2b}=\frac{1}{2}\Rightarrow a=\frac{1}{2}.2b\Rightarrow a=b\) (1)

\(\Rightarrow\frac{b}{2c}=\frac{1}{2}\Rightarrow b=\frac{1}{2}.2c\Rightarrow b=c\) (2)

\(\Rightarrow\frac{c}{2a}=\frac{1}{2}\Rightarrow c=\frac{1}{2}.2a\Rightarrow c=a\) (3)

\(\Rightarrow\frac{d}{2a}=\frac{1}{2}\Rightarrow d=\frac{1}{2}.2a\Rightarrow d=a\) (4)

Từ (1);(2);(3):(4) \(\Rightarrow a=b=c=d\) .Thay vào A ta được :

\(A=\frac{2011a-2010a}{a+a}+\frac{2011a+2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)

\(=\frac{a}{2a}+\frac{4021a}{2a}+\frac{a}{2a}+\frac{a}{2a}=\frac{a+4021a+a+a}{2a}=\frac{4024a}{2a}=\frac{4024}{2}=2012\)

Vậy \(A=2012\)

Bình luận (1)

Các câu hỏi tương tự
NB
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
DA
Xem chi tiết
LH
Xem chi tiết
DN
Xem chi tiết
DA
Xem chi tiết
YT
Xem chi tiết
NT
Xem chi tiết