Đặt \(\frac{a}{b}\) = \(\frac{b}{c}\) = \(\frac{c}{d}\) = k
=> a = bk; b = ck và c = dk
Xét 2 vế:
VT = \(\left(\frac{a+b+c}{b+c+d}\right)^3\) = \(\left(\frac{bk+ck+dk}{ck+dk+d}\right)^3\) = \(\left(\frac{k\left(b+c+d\right)}{k\left(c+d\right)+d}\right)^3\) = \(\left(\frac{bk}{d}\right)^3\) = \(\frac{bk}{d}\) (1)
VP = \(\frac{a}{d}\) = \(\frac{bk}{d}\) (2)
Từ (1) và (2) suy ra VT = VP
\(\Leftrightarrow\) \(\left(\frac{a+b+c}{b+c+d}\right)^3\) = \(\frac{a}{d}\) \(\rightarrow\) đpcm.