Bài 5. ÔN TẬP CUỐI NĂM

PC

Bài tập :

B1 Viết phương trình đường tròn (C1) có bán kính R1 = 1 , tiếp xúc với trục Ox và có tâm nằm trên đường thẳng denta : 3x - y +7 = 0

B2 Cho đường tròn (C) : x2 + y2 - 2x - 4y - 4 = 0 và đường thẳng (d) : 3x + 4y +4 = 0 . Chứng minh rằng (d) tiếp xúc với (C)

AH
29 tháng 4 2019 lúc 14:38

Bài 1:
Gọi $I$ là tâm đường tròn. Vì $I$ nằm trên đt \(\Delta: 3x-y+7=0\) nên $I$ có tọa độ $(a,3a+7)$

Đường tròn tiếp xúc với trục Ox nên:

\(d(I,Ox)=R=1\Leftrightarrow |3a+7|=1\Rightarrow \left[\begin{matrix} a=-2\\ a=\frac{-8}{3}\end{matrix}\right.\)

Nếu \(a=-2\Rightarrow I(-2, 1)\). PTĐTr là:

\((x+2)^2+(y-1)^2=1\)

Nếu \(a=-\frac{8}{3}\Rightarrow I(\frac{-8}{3}, -1)\). PTĐTr là:

\((x+\frac{8}{3})^2+(y+1)^2=1\)

Bình luận (0)
AH
29 tháng 4 2019 lúc 14:43

Bài 2:

Ta viết lại pt đường tròn:

\(x^2+y^2-2x-4y-4=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2-9=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2=9\)

Vậy đường tròn $(C)$ có tâm $I(1,2)$ và bán kính $R=3$

Có : \(d(I,(d))=\frac{|3x_I+4y_I+4|}{\sqrt{3^2+4^2}}=\frac{|3.1+4.2+4|}{5}=3=R_{(C)}\)

Do đó đường thẳng (d) tiếp xúc với đường tròn $(C)$

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
NN
Xem chi tiết
PC
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
LT
Xem chi tiết
HH
Xem chi tiết
MB
Xem chi tiết
HH
Xem chi tiết