Bài giải
\(A\left(x\right)=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
\(=\left[\left(x-1\right)\left(x-6\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+10\)
\(=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+10\)
Đặt \(x^2-7x+9=t\)
Khi đó \(A=\left(t-3\right)\left(t+3\right)+10=t^2+1\ge1\forall t\)
Dấu " = " xảy ra khi : \(x^2-7x+9=0\)