VT

Bài 8: Cho MNK cân tại M có đường phân giác MH. Gọi I là một điểm nằm giữa M và H. Tia KI cắt MN tại
A, tia NI cắt MK tại B.
a. Chứng minh ABKN là hình thang cân.
b. Chứng minh MI vừa là đường trung trực của AB vừa là đường trung trực của KN.

mình cần gấp ngày 16/9 ;8:15`

NM
16 tháng 9 2021 lúc 7:16

\(a,\Delta ABC\) cân nên MH là p/g cũng là trung trực NK

Mà \(I\in MH\) nên \(NI=IK\)

\(\Rightarrow\Delta NIK\) cân tại \(I\Rightarrow\widehat{INK}=\widehat{IKN}\)

\(\Rightarrow\widehat{MNK}-\widehat{INK}=\widehat{MKN}-\widehat{IKN}\left(\Delta MNP.cân\right)\\ \Rightarrow\widehat{ANI}=\widehat{BKI}\)

\(\left\{{}\begin{matrix}\widehat{ANI}=\widehat{BKI}\left(cm.trên\right)\\NI=IK\left(cm.trên\right)\\\widehat{AIN}=\widehat{BIK}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AIN=\Delta BIK\left(g.c.g\right)\)

\(\Rightarrow AN=BK\Rightarrow\dfrac{AN}{MN}=\dfrac{BK}{MK}\left(MN=MK.do.\Delta MNK.cân\right)\)

\(\Rightarrow AB//NK\left(Talét.đảo\right)\\ \Rightarrow ABKN.là.hthang\)

Mà \(\widehat{MNK}=\widehat{MKN}\Rightarrow ABKN.là.hthang.cân\)

\(b,MH\perp NK\left(trung.trực\right)\\ \Rightarrow MH\perp AB\left(NK//AB\right)\Rightarrow MI\perp AB\)

Mà MI là p/g \(\Delta MNK\) nên cũng là p/g \(\Delta MAB\)

\(\Rightarrow\Delta MAB\) cân tại M

\(\Rightarrow MI\) là p/g cũng là trung trực AB

Mà MI là trung trực KN

\(\RightarrowĐpcm\)

 

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
BN
Xem chi tiết
DQ
Xem chi tiết
B0
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
B0
Xem chi tiết