\(\text{Bài 4. Chứng tỏ rằng:}\)
\(a\)) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}< 1\)
\(b\)) \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}>1\)
\(c\)) \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 2\)
\(d\)) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}< 1\)
Bài 7: Chứng tỏ rằng:
1/2^2 + 1/3^2 + 1/4^2 + ...1/100^2 < 3/4
Bài 8: So sánh A= 20^10 + 1 / 20^10 - 1 và B= 20^10 - 1 / 20^10 - 3.
Bài 1: a) Chứng minh rằng: a/n(n+a) = 1/n- 1/n+a (a,n€ N*)
b) Áp dụng câu a tinh :
A = 1/2x3 + 1/3×4 +...+ 1/99×100
B= 5/1×4 + 5/4×7 + ...+ 5/100×103
C = 1/15 + 1/35 + ... + 1/2499
Bài 2:
Chứng tỏ rằng ps n+1/n+2 tối giản với mọi n là số tự nhiên
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
Chứng tỏ rằng :
(1+1/3+1/5+1/7+......+1/101)-(1/2+1/4+1/6+...+1/100) = 1/52+1/53+1/54+.....+1/100+1/101+1/102
Chứng tỏ rằng: 1/2*3+1/3*4+1/4*5+....+1/99*100<1/2
bài 1:
chứng tỏ rằng các số dạng abcabc chia hết cho 7,11,13
Bài 2:
tìm số dư khi chia tổng 21+22+23+24+...+2100 cho7
Bài 3:
Chứng tỏ rằng :
[7n+1] * [7n+2] chia hết cho 3
Bài 3:Cho phân số:
m/n = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6
Chứng tỏ rằng m:7
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5