(do xy > 0 (gt) nên đưa thừa số xy vào trong căn để khử mẫu)
#Học tốt!!!
\(ab\cdot\sqrt{\dfrac{a}{b}}=a\cdot\sqrt{ab}\)
\(\dfrac{a}{b}\cdot\sqrt{\dfrac{b}{a}}=\dfrac{\sqrt{a\cdot b}}{b}\)
\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\dfrac{\sqrt{b+1}}{b}\)
\(\sqrt{\dfrac{9\cdot a^3}{36\cdot b}}=\dfrac{\sqrt{a^3\cdot b}}{2\cdot b}\)
\(3\cdot x\cdot y\cdot\sqrt{\dfrac{2}{x\cdot y}}=3\cdot\sqrt{2\cdot x\cdot y}\)
\(a\cdot b\cdot\sqrt{\dfrac{a}{b}}=a\cdot\sqrt{a\cdot b}\)
\(\dfrac{a}{b}\cdot\sqrt{\dfrac{b}{a}}=\dfrac{\sqrt{a\cdot b}}{b}\)
\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\dfrac{\sqrt{b+1}}{b}\)
\(\sqrt{\dfrac{9\cdot a^3}{36\cdot b}}=\dfrac{\sqrt{a^3\cdot b}}{2\cdot b}\)
\(3\cdot x\cdot y\cdot\sqrt{\dfrac{2}{x\cdot y}}=3\cdot\sqrt{2\cdot x\cdot y}\)
Thu gọn kết quả hơn ta được:
-) Nếu , ta có:
-) Nếu , ta có:
+)
+)
+)
Thu gọn kết quả hơn ta được:
-) Nếu , ta có:
-) Nếu , ta có:
+)
+)
+)
Có thể nhận xét , dùng cách đưa } nhân tử
.
.
+ Ta có:
+ Ta có:
.
.
.
+ Ta có:
.
có nghĩa nên
\(ab\sqrt{\dfrac{a}{b}}=\sqrt{a^2b^2\dfrac{a}{b}}=\sqrt{a^3b}\)
\(\dfrac{a}{b}\sqrt{\dfrac{b}{a}}=\sqrt{\dfrac{a^2}{b^2}\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{ab}}{b}\)
\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\sqrt{\dfrac{b+1}{b^2}}=\dfrac{\sqrt{b+1}}{b}\)
\(\sqrt{\dfrac{9a^3}{36b}}=\sqrt{\dfrac{a^3}{4b}}=\dfrac{a\sqrt{a}}{2\sqrt{b}}=\dfrac{a\sqrt{ab}}{2b}\)
\(3xy\sqrt{\dfrac{2}{xy}}=\sqrt{9xy^2.\dfrac{2}{xy}}=\sqrt{18xy}\)
+) \(ab\sqrt{\dfrac{a}{b}}=ab.\dfrac{\sqrt{a}}{\sqrt{b}}=ab.\dfrac{\sqrt{a}.\sqrt{b}}{\sqrt{b}.\sqrt{b}}=ab.\dfrac{\sqrt{ab}}{\sqrt{b^2}}=ab.\dfrac{\sqrt{ab}}{|b|}\)
\(Th1:b>0\Rightarrow ab.\dfrac{\sqrt{ab}}{b}=a\sqrt{ab}\)
\(Th2:b< 0\Rightarrow ab.\dfrac{\sqrt{ab}}{-b}=-a\sqrt{ab}\)
+)\(\dfrac{a}{b}.\sqrt{\dfrac{b}{a}}=\dfrac{a}{b}.\dfrac{\sqrt{b}}{\sqrt{a}}=\dfrac{a}{b}.\dfrac{\sqrt{b}.\sqrt{a}}{\sqrt{a^2}}=\dfrac{a}{b}.\dfrac{\sqrt{ab}}{|a|}\)
\(Th1:a>0\Rightarrow\dfrac{a}{b}.\dfrac{\sqrt{a}}{b}=\dfrac{\sqrt{ab}}{b}\)
\(Th2:a< 0\Rightarrow\dfrac{a}{b}.\dfrac{\sqrt{ab}}{\left(-a\right)}=\dfrac{-\sqrt{ab}}{b}\)
+)\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\sqrt{\dfrac{b+1}{b}}=\dfrac{\sqrt{b+1}}{\sqrt{b^2}}=\dfrac{\sqrt{b+1}}{|b|}\)
\(Th1:b>0\Rightarrow\dfrac{\sqrt{b+1}}{b}\)
\(Th2:b< 0\Rightarrow\dfrac{-\sqrt{b+1}}{b}\)
+)\(\sqrt{\dfrac{9a^3}{36b}}=\sqrt{\dfrac{a^3}{4b}}=\dfrac{\sqrt{a^2}.\sqrt{a}}{2\sqrt{b}}=\dfrac{|a|.\sqrt{a}.\sqrt{b}}{2\sqrt{b}.\sqrt{b}}=\dfrac{|a|.\sqrt{ab}}{2.|b|}\)
\(Th1:a>0,b>0\Rightarrow\dfrac{a.\sqrt{ab}}{2b}\)
\(Th2:a< 0,b< 0\Rightarrow\dfrac{-a.\sqrt{ab}}{2b}\)
+)\(3xy\sqrt{\dfrac{2}{xy}}=3xy.\dfrac{\sqrt{2}}{\sqrt{xy}}=3xy.\dfrac{\sqrt{2}}{\sqrt{xy}}.\dfrac{\sqrt{xy}}{\sqrt{xy}}=3xy.\dfrac{\sqrt{2xy}}{|xy|}\)
\(Vì\) x,y>0\(\Rightarrow3xy.\dfrac{\sqrt{2xy}}{xy}\)
\(\sqrt{a^3b}\);\(\dfrac{\sqrt{ab}}{b}\);\(\dfrac{\sqrt{b+1}}{\left|b\right|}\);\(\dfrac{\sqrt{a^3b}}{2\left|b\right|}\);\(3\sqrt{2xy}\)
\(3\sqrt{2xy}\)
+)
+)
Thu gọn kết quả hơn ta được:
-) Nếu , ta có:
-) Nếu , ta có:
+)
+)
Thu gọn kết quả hơn ta được:
-) Nếu , ta có:
-) Nếu , ta có:
+)
+)
+)
Thu gọn kết quả hơn ta được:
-) Nếu , ta có:
-) Nếu , ta có:
+)
+)
a\(a\sqrt{ab}\)b\(\dfrac{\sqrt{ab}}{b}\)c\(\dfrac{\sqrt{b+1}}{b}\)d\(\dfrac{\sqrt{a^3}}{2b}\)e\(\dfrac{3\sqrt{xy}}{xy}\)