NL

Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy E sao cho AE=AC

Chứng minh rằng

a )AM=1/2DE

b)AM vuông góc với DE

TT
1 tháng 9 2021 lúc 10:18

a) Trên tia đối tia MA lấy điểm F sao cho AM = AF (*)

Xét tam giác BFM và tam giác ACM có:

AM = FM (theo *)

Góc BMF = góc AMC (2 góc đối đỉnh)

BM = CM (vì M là trung điểm của BC)

=> Tam giác BFM = tam giác CAM (c.g.c)

=> AC = BF (2 cạnh tương ứng)

Vì AC = AE (gt) nên AE = BF

Ta có: góc F = góc CAM (vì tam giác BFM = tam giác CAM)

Mà 2 góc này ở vị trí so le trong

=> BF // AC (dấu hiệu nhận biết)

=> Góc BAC + góc ABF = 180 độ (2 góc trong cùng phía)

Mà góc BAC + góc DAE = 180 độ 

=> Góc DAE = góc ABF

Xét tam giác ABF và tam giác ADE có:

AB = AD (gt)

Góc DAE = góc ABF (chứng minh trên)

AE = BF (2 cạnh tương ứng)

=> Tam giác ADE = tam giác BAF (c.g.c)

=> AF = DE (2 cạnh tương ứng)

Lại có: AM = AF : 2 => AM = DE : 2   (đpcm)

b) Gọi giao điểm của AM và DE là N

Ta có: tam giác ADE = tam giác BAF (chứng minh trên)

=> Góc D = góc BAF (2 góc tương ứng)

Mà góc BAF + góc DAN = 180 độ - góc BAD = 180 độ - 90 độ = 90 độ

=> Góc D + góc DAN = 90 độ

=> Tam giác ADN vuông tại N

hay AM _|_ DE   (đpcm)

Bình luận (0)